【題目】函數(shù)f(x)=2x﹣ 的零點(diǎn)個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
【答案】C
【解析】解:易知函數(shù)的定義域?yàn)閧x|x≠1},
∵ >0,
∴函數(shù)在(﹣∞,1)和(1,+∞)上都是增函數(shù),
又 <0,f(0)=1﹣(﹣2)=3>0,
故函數(shù)在區(qū)間(﹣4,0)上有一零點(diǎn);
又f(2)=4﹣4=0,
∴函數(shù)在(1,+∞)上有一零點(diǎn)0,
綜上可得函數(shù)有兩個(gè)零點(diǎn).
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較,以及對(duì)函數(shù)的零點(diǎn)的理解,了解函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,
試求當(dāng)時(shí), 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在函數(shù) 的所有切線中,有且僅有一條切線l與直線y=x垂直.
(1)求a的值和切線l的方程;
(2)設(shè)曲線y=f(x)在任一點(diǎn)處的切線傾斜角為α,求α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函數(shù)f(x)在[﹣1,3m]上不具有單調(diào)性,求實(shí)數(shù)m的取值范圍;
(2)若f(1)=g(1)
①求實(shí)數(shù)a的值;
②設(shè)t1= f(x),t2=g(x),t3=2x , 當(dāng)x∈(0,1)時(shí),試比較t1 , t2 , t3的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過(guò)一定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前項(xiàng)和為Sn , 且a2=2,S5=15,數(shù)列{bn}的前項(xiàng)和為T(mén)n , 且b1= ,2nbn+1=(n+1)bn(n∈N*)
(Ⅰ)求數(shù)列{an}通項(xiàng)公式an及前項(xiàng)和Sn;
(Ⅱ) 求數(shù)列{bn}通項(xiàng)公式bn及前項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com