13.將函數(shù)f(x)=sin(4x+$\frac{π}{6}$)圖象上所有點的橫坐標(biāo)伸長到原來的2倍,再向右平移$\frac{π}{6}$個單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是直線( 。
A.x=$\frac{π}{2}$B.x=$\frac{π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{2π}{3}$

分析 由題意根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,得出結(jié)論.

解答 解:將函數(shù)f(x)=sin(4x+$\frac{π}{6}$)圖象上所有點的橫坐標(biāo)伸長到原來的2倍,可得y=sin(2x+$\frac{π}{6}$)的圖象,
再向右平移$\frac{π}{6}$個單位長度,得到函數(shù)y=g(x)=sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]=sin(2x-$\frac{π}{6}$)的圖象.
令x=$\frac{π}{3}$,求得g(x)=1,為函數(shù)g(x)的最大值,
則y=g(x)圖象的一條對稱軸是直線x=$\frac{π}{3}$,
故選:C.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)滿足:存在非零常數(shù)a,使f(x)=-f(2a-x),則稱f(x)為“準奇函數(shù)”,給出下列函數(shù):①f(x)=x2;②f(x)=(x-1)3;③f(x)=ex-1;④f(x)=cosx.則以上函數(shù)中是“準奇函數(shù)”的序號是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知全集U=R,A={x|$\frac{1}{2}$≤2x≤8},B={x|x>0},C={x|m<x<m+2}
(Ⅰ)求A∩(∁UB);
(Ⅱ)若A∩C=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(x,y)滿足不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,則z=x-y的取值范圍是( 。
A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l經(jīng)過兩條直線2x+y-8=0和x-2y+1=0的交點,且平行于直線4x-3y-7=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題p:?x∈(-∞,0),2x>3x,則( 。
A.p是假命題,¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$
B.p是假命題¬p:?x∈(-∞,0),2x>3x
C.p是真命題¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$
D.p是真命題¬p:?x∈(-∞,0),2x>3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=x2-3x的定義域為{1,2,3},則f(x)的值域為{-2,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤2\\ 2y-x≥1\end{array}\right.$,z=2y-2x+4的最大值為m,最小值為n,則m+n=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)求值:$lg5+lg2+{({\frac{3}{5}})^0}+ln{e^{\frac{1}{2}}}$(其中e為自然對數(shù)的底數(shù));
(2)已知cosα=$\frac{{2\sqrt{2}}}{3},\;sin(α+β)=\frac{1}{3},\;α∈(0,\frac{π}{2}),\;β∈(\frac{π}{2},π)$,求cosβ的值.

查看答案和解析>>

同步練習(xí)冊答案