8.在△ABC中,若A<B<C,且A+C=2B,最大邊為最小邊的2倍,則三個角A:B:C=( 。
A.1:2:3B.2:3:4C.3:4:5D.4:5:6

分析 由已知等式,利用三角形內(nèi)角和定理求出B的度數(shù),進(jìn)而用A表示出C,再利用正弦定理化簡c=2a,將表示出的C代入,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡,整理后求出tanA的值,進(jìn)而求出A與C的度數(shù),確定出三內(nèi)角之比.

解答 解:∵A<B<C,且A+C=2B,
∴A+B+C=3B=180°,即B=60°,
∵最大邊為最小邊的2倍,
∴c=2a,
根據(jù)正弦定理得:sinC=2sinA,
將C=120°-A代入得:sin(120°-A)=2sinA,
整理得:$\frac{\sqrt{3}}{2}$cosA=$\frac{3}{2}$sinA,即tanA=$\frac{\sqrt{3}}{3}$,
∴A=30°,C=90°,
則三角形三內(nèi)角之比為1:2:3.
故選:A.

點評 此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.經(jīng)過點M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為4$\sqrt{5}$,則直線l的方程為  ( 。
A.x-2y+9=0或x+2y+3=0B.2x-y+9=0或2x+y+3=0
C.x+2y+3=0或x-2y+9=0D.x+2y+9=0或2x-y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知實數(shù)m+n=1,則3m+3n的最小值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知△ABC中,a,b,c分別是角A,B,C的對邊,a=$\sqrt{2}$,b=$\sqrt{3}$,A=$\frac{π}{4}$,則B=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.利用計算機(jī)在區(qū)間(0,1)上產(chǎn)生隨機(jī)數(shù)a,則不等式0<log2(3a-1)<1成立的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若關(guān)于x的不等式|x+3|-|x-1|>a2-3a的解集不空,則實數(shù)a的范圍是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△ABC中,BC邊上的中線AD長為3,且cosB=$\frac{\sqrt{10}}{8}$,cos∠ADC=-$\frac{1}{4}$.
(1)求sin∠BAD的值;
(2)求AC邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.“x+y=0”是“|x|=|y|”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$,求點A(2,$\frac{π}{6}$)到這條直線的距離$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案