考點:兩角和與差的正弦函數(shù)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)條件,構(gòu)造函數(shù)f(t)=t3+2t+sint,利用函數(shù)f(t)的奇偶性和單調(diào)性解方程即可.
解答:
解:∵(x-2)3+2x+sin(x-2)=2,
∴(x-2)3+2(x-2)+sin(x-2)=2-4=-2,
∵(y-2)3+2y+sin(y-2)=6,
∴(y-2)3+2(y-2)+sin(y-2)=6-4=2,
設f(t)=t3+2t+sint,
則f(t)為奇函數(shù),且f′(t)=3t2+2+cost>0,
即函數(shù)f(t)單調(diào)遞增.
由題意可知f(x-2)=-2,f(y-2)=2,
即f(x-2)+f(y-2)=2-2=0,
即f(x-2)=-f(y-2)=f(2-y),
∵函數(shù)f(t)單調(diào)遞增
∴x-2=2-y,
即x+y=4.
點評:本題考查了函數(shù)奇偶性的性質(zhì),解答此題的關鍵在于把已知的兩等式變形,進一步構(gòu)造出奇函數(shù)f(t)=t3+2t+sint,題目綜合性較強,屬中高檔題.