【題目】如圖1,在直角梯形中,,,,,上一點(diǎn),且,過,現(xiàn)將沿折到,使,如圖2.

1)求證:平面

2)在線段上是否存在一點(diǎn),使與平面所成的角為?若存在,確定點(diǎn)的位置;若不存在,請說明理由.

【答案】1)證明見解析;(2)不存在,理由見解析

【解析】

(1)解法一:,,推出平面,即有平面,,結(jié)合即可推出平面;解法二:建立空間直角坐標(biāo)系,利用向量推出結(jié)論;

(2)(1)平面,故以所在的直線為,所在的直線為,在平面內(nèi)過的垂線,以垂線所在直線為,建立空間直角坐標(biāo)系,設(shè)是線段上一點(diǎn),則存在,使,再利用向量,結(jié)合線面角公式列式求解即可.

(1)解法一:

,,,

由余弦定理得,

,,

又直角梯形,,

,,,

平面,

又∵,平面,,

又因?yàn)橹本,在平面內(nèi),且相交于,平面.

解法二:

以為,,,

平面,所以平面平面,

所在的直線為,所在的直線為,在平面內(nèi)過

的垂線,以垂線所在直線為,建立空間直角坐標(biāo)系,如圖所示:

,,,,

,,,

,,

,

,,

,是平面內(nèi)的相交直線,

平面.

(2)(1)平面,∴平面平面,

所在的直線為,所在的直線為,在平面內(nèi)過的垂線,以垂線所在直線為,建立空間直角坐標(biāo)系,如圖所示:

,,,,

,,

平面,∴平面的一個(gè)法向量為,

設(shè)是線段上一點(diǎn),則存在,使,

,

,

如果直線與平面所成的角為,

那么,,

解得,此方程在內(nèi)無解,

所以在線段上不存在一點(diǎn),使與平在所成的角為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)半徑為2千米,圓心角為的扇形游覽區(qū)的平面示意圖是半徑上一點(diǎn),是圓弧上一點(diǎn),且.現(xiàn)在線段,線段及圓弧三段所示位置設(shè)立廣告位,經(jīng)測算廣告位出租收入是:線段處每千米為元,線段及圓弧處每千米均為元.設(shè)弧度,廣告位出租的總收入為元.

(1)求關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

(2)試問:為何值時(shí),廣告位出租的總收入最大?并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為保障食品安全,某地食品藥監(jiān)管部門對轄區(qū)內(nèi)甲、乙兩家食品企業(yè)進(jìn)行檢查,分別從這兩家企業(yè)生產(chǎn)的某種同類產(chǎn)品中隨機(jī)抽取了100件作為樣本,并以樣本的一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)值為檢測依據(jù).已知該質(zhì)量指標(biāo)值對應(yīng)的產(chǎn)品等級如下:

質(zhì)量指標(biāo)值

[15,20

[2025

[25,30

[3035

[35,40

[40,45]

等級

次品

二等品

一等品

二等品

三等品

次品

根據(jù)質(zhì)量指標(biāo)值的分組,統(tǒng)計(jì)得到了甲企業(yè)的樣本頻率分布直方圖和乙企業(yè)的樣本頻數(shù)分布表(如下面表,其中a0).

質(zhì)量指標(biāo)值

頻數(shù)

[15,20

2

[2025

18

[25,30

48

[30,35

14

[35,40

16

[40,45]

2

合計(jì)

100

(Ⅰ)現(xiàn)從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,試估計(jì)該件產(chǎn)品為次品的概率;

(Ⅱ)為守法經(jīng)營、提高利潤,乙企業(yè)開展次品生產(chǎn)原因調(diào)查活動.已知乙企業(yè)從樣本里的次品中隨機(jī)抽取了兩件進(jìn)行分析,求這兩件次品中恰有一件指標(biāo)值屬于[40,45]的產(chǎn)品的概率;

(Ⅲ)根據(jù)圖表數(shù)據(jù),請自定標(biāo)準(zhǔn),對甲、乙兩企業(yè)食品質(zhì)量的優(yōu)劣情況進(jìn)行比較.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,且,

1)求數(shù)列的通項(xiàng)公式;

2)若對,都有,求實(shí)數(shù)a的取值范圍;

3)當(dāng)時(shí),將數(shù)列中的部分項(xiàng)按原來的順序構(gòu)成數(shù)列證明:存在無數(shù)個(gè)滿足條件的無窮等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點(diǎn)向下平移1個(gè)單位,然后橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線

1)求曲線和曲線的直角坐標(biāo)方程;

2)若曲線和曲線相交于兩點(diǎn),求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定數(shù)列,若滿足),對于任意的,都有,則稱數(shù)列為“指數(shù)型數(shù)列”.

1)已知數(shù)列的通項(xiàng)公式為,試判斷數(shù)列是不是“指數(shù)型數(shù)列”;

2)已知數(shù)列滿足,,證明數(shù)列為等比數(shù)列,并判斷數(shù)列是否為“指數(shù)型數(shù)列”,若是給出證明,若不是說明理由;

3)若數(shù)列是“指數(shù)型數(shù)列”,且,證明數(shù)列中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的長軸是短軸的兩倍,點(diǎn)在橢圓上.不過原點(diǎn)的直線與橢圓相交于、兩點(diǎn),設(shè)直線、、的斜率分別為、、,且、、恰好構(gòu)成等比數(shù)列,

1)求橢圓的方程;

2)試判斷是否為定值?若是,求出這個(gè)值;若不是,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了豐富學(xué)生的課外文體活動,分別開設(shè)了閱讀、書法、繪畫等文化活動;跑步、游泳、健身操等體育活動.該中學(xué)共有高一學(xué)生300名,要求每位學(xué)生必須選擇參加其中一項(xiàng)活動,現(xiàn)對高一學(xué)生的性別、學(xué)習(xí)積極性及選擇參加的文體活動情況進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:

(1)在選擇參加體育活動的學(xué)生中按性別分層抽取6名,再從這6名學(xué)生中抽取2人了解家庭情況,求2人中至少有1名女生的概率;

(2)是否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與選擇參加文化活動有關(guān)?請說明你的理由.

附:參考公式:,其中

查看答案和解析>>

同步練習(xí)冊答案