8.已知函數(shù)f(x)=lnx+2.
(1)若f(x)的切線過點(diǎn)P(0,2),求此切線的方程;
(2)若方程f(x)=kx+k(k>0)在區(qū)間[1,e](其中e為自然數(shù)的底數(shù))內(nèi)有實(shí)根,求k的取值范圍.

分析 (1)設(shè)出切點(diǎn)坐標(biāo),表示出切線方程,將P(0,2)代入切線,求出切點(diǎn)的坐標(biāo),從而求出切線方程即可;
(2)求出k=$\frac{lnx+2}{x+1}$,(x∈[1,e]),設(shè)h(x)=$\frac{lnx+2}{x+1}$,根據(jù)函數(shù)的單調(diào)性求出h(x)在[1,e]的最值,從而求出k的范圍即可.

解答 解:(1)設(shè)切點(diǎn)是(x0,lnx0+2),
f′(x)=$\frac{1}{x}$,k=$\frac{1}{{x}_{0}}$,
∴切線方程是y-(lnx0+2)=$\frac{1}{{x}_{0}}$(x-x0),
此直線過P(0,2),代入得:lnx0=1,
∴x0=e,
∴切線方程是y-3=$\frac{1}{e}$(x-e),
即y=$\frac{1}{e}$x+2;
(2)由f(x)=kx+k,得k=$\frac{lnx+2}{x+1}$,(x∈[1,e]),
設(shè)h(x)=$\frac{lnx+2}{x+1}$,h′(x)=$\frac{\frac{1}{x}-lnx-1}{{(x+1)}^{2}}$,
設(shè)p(x)=$\frac{1}{x}$-lnx-1,p′(x)=-$\frac{1}{{x}^{2}}$-$\frac{1}{x}$<0,
∴p(x)在[1,e]遞減,
∴x∈[1,e]時,p(x)≤p(1)=0,
∴h′(x)≤0,
∴h(x)在[1,e]遞減,
∴h(x)最小值=h(e)=$\frac{3}{e+1}$,
h(x)最大值=h(1)=1,
∴$\frac{3}{e+1}$≤k≤1時,f(x)=kx+k,(k>0)在[1,e]內(nèi)有實(shí)根,
∴k的范圍是[$\frac{3}{e+1}$,1].

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查曲線的切線方程問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.2015年12月10日,我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎,以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為x,y,z,并對它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)ω=x+y+z的值評定人工種植的青蒿的長勢等級:若ω≥4,則長勢為一級;若2≤ω≤3,則長勢為二級;若0≤ω≤1,則長勢為三級;為了了解目前人工種植的青蒿的長勢情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如表結(jié)果:
種植地編號A1A2A3A4A5
(x,y,z)(0,1,0)(1,2,1)(2,1,1)(2,2,2)(0,1,1)
種植地編號A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,2)(2,0,1)(2,2,1)(0,2,1)
(1)若該地有青蒿人工種植地180個,試估計該地中長勢等級為三級的個數(shù);
(2)從長勢等級為一級的青蒿人工種植地中隨機(jī)抽取兩個,求這兩個人工種植地的綜合指標(biāo)ω均為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-sin2x-2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)函數(shù)y=f(x)的圖象向右移動$\frac{π}{12}$個單位長度后得到以y=g(x)的圖象,求y=g(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,若$\sqrt{a+\frac{7}{t}}$=a$\sqrt{\frac{7}{t}}$(a,t均為正實(shí)數(shù)),類比以上等式,可推測a,t的值,則t-a=(  )
A.31B.41C.55D.71

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線ρsinθ=2與圓ρ=2的位置關(guān)系是相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x,y滿足不等式組$\left\{\begin{array}{l}{2x-3y-6≥0}\\{x+y-3≥0}\\{x≤\frac{7}{2}}\end{array}\right.$,z=x-y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在Rt△ABC 中,∠C=90°,BE平分∠ABC交AC于E,D是AB上一點(diǎn),且DE⊥BE.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2$\sqrt{6}$,AE=6$\sqrt{2}$,求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.畫出下列函數(shù)的簡圖.
(1)y=$\frac{x}{2}$+$\frac{2}{x}$;
(2)y=x-$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,${\overrightarrow{AB}}^{2}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$,$\overrightarrow{OA}$+$\overrightarrow{OC}$+$\overrightarrow{AB}$=$\overrightarrow{0}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|=1,則$\overrightarrow{CA}$•$\overrightarrow{CB}$等于3.

查看答案和解析>>

同步練習(xí)冊答案