【題目】如圖,在正四棱錐中,,點、分別在線段、上,

(1)若,求證:;

(2)若二面角的大小為,求線段的長.

【答案】(1)證明見解析;(2)

【解析】

試題由于圖形是正四棱錐,因此設(shè)AC、BD交點OOAx軸正方向,以OBy軸正方向,OPz軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明0即可證明垂直;(2設(shè)=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得

試題: (1)連結(jié)AC、BD交于點O,以OAx軸正方向,以OBy軸正方向,OPz軸正方向建立空間直角坐標系.

因為PAAB

A(1,00),B(0,1,0),D(0,-1,0)P(0,0,1)

,得N

,得M,

所以(1,-1,0)

因為=0,所以MN⊥AD

(2) 解:因為MPA上,可設(shè)=λ,得M(λ,0,1-λ)

所以(λ,-1,1-λ),(0,-2,0)

設(shè)平面MBD的法向量(x,yz),

,

其中一組解為x=λ-1y0,z=λ,所以可取(λ-1,0,λ)

因為平面ABD的法向量為(0,0,1),

所以cos,即,解得λ=,

從而M,N

所以MN

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線1(a>0,b>0)的一條漸近線方程為2xy0,且頂點到漸近線的距離為.

(1)求此雙曲線的方程;

(2)設(shè)P為雙曲線上一點,A,B兩點在雙曲線的漸近線上,且分別位于第一、二象限,若,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;

)若,函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為200的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各100人;男性120人,女性80人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖,如圖所示,其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別有關(guān)

C. 傾向選擇生育二胎的人群中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.

(Ⅰ)證明:

(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心為,直線l過點且與x軸不重合,l交圓C,D兩點,過的平行線,交于點E.設(shè)點E的軌跡為.

1)求的方程;

2)直線相切于點M,與兩坐標軸的交點為AB,直線經(jīng)過點M且與垂直,的另一個交點為N,當取得最小值時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若的值域為,求的值;

(Ⅱ)巳,是否存在這祥的實數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個零點.若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,其前項和為,滿足,,其中,,.

⑴若,),求證:數(shù)列是等比數(shù)列;

⑵若數(shù)列是等比數(shù)列,求,的值;

⑶若,且,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】衡陽市八中對參加社會實踐活動的全體志愿者進行學分考核,因該批志愿者表現(xiàn)良好,學校決定考核只有合格和優(yōu)秀兩個等次.若某志愿者考核為合格,授予1個學分;考核為優(yōu)秀,授予2個學分,假設(shè)該校志愿者甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等次相互獨立.

1)求在這次考核中,志愿者甲、乙、丙三人中至少有一名考核為優(yōu)秀的概率;

2)記在這次考核中甲、乙、丙三名志愿者所得學分之和為隨機變量,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案