【題目】動點(diǎn)P,Q從點(diǎn)A(1,0)出發(fā)沿單位圓運(yùn)動,點(diǎn)P按逆時針方向每秒鐘轉(zhuǎn) 弧度,點(diǎn)Q按順時針方向每秒鐘轉(zhuǎn) 弧度,設(shè)P,Q第一次相遇時在點(diǎn)B,則B點(diǎn)的坐標(biāo)為 .
【答案】(﹣ ,﹣ )
【解析】解:設(shè)P、Q第一次相遇時所用的時間是t,
則t +t|﹣ |=2π,
∴t=4(秒),
即第一次相遇的時間為4秒;
設(shè)第一次相遇點(diǎn)為B,第一次相遇時P點(diǎn)已運(yùn)動到終邊在 4= 的位置,
則xB=﹣cos 1=﹣ ,
yB=﹣sin 1=﹣ .
∴B點(diǎn)的坐標(biāo)為(﹣ ,﹣ ).
故答案為:(﹣ ,﹣ ).
根據(jù)兩個動點(diǎn)的角速度和第一次相遇時,兩者走過的弧長和恰好是圓周長求出第一次相遇的時間,再由角速度和時間求出其中一點(diǎn)到達(dá)的位置,根據(jù)三角函數(shù)的定義得出此點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AD=2,AB=1,點(diǎn)E是AD的中點(diǎn),將△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.
(1)證明:BE⊥CD′;
(2)求二面角D′﹣BC﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列4個命題,其中正確的命題是 ①“ ”是“ 不共線”的充要條件;
②已知向量 是空間兩個向量,若 ,則向量 的夾角為60°;
③拋物線y=﹣x2上的點(diǎn)到直線4x+3y﹣8=0的距離的最小值是 ;
④與兩圓A:(x+5)2+y2=49和圓B:(x﹣5)2+y2=1都外切的圓的圓心P的軌跡方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是邊長為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是側(cè)棱PA的中點(diǎn).
(1)求證:PC∥平面BDE
(2)求三棱錐P﹣CED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列{an}的前n項和為Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=|2n﹣5|an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)解不等式|6﹣|2x+1||>1; (Ⅱ)若關(guān)于x的不等式|x+1|+|x﹣1|+3+x<m有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的三角形空地中,欲建一個面積不小于200m2的內(nèi)接矩形花園(陰影部分),則其邊長x(單位:m)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于實數(shù)x的不等式﹣x2+bx+c<0的解集是{x|x<﹣3或x>2},則關(guān)于x的不等式cx2﹣bx﹣1>0的解集是( )
A.(﹣ , )
B.(﹣2,3)
C.(﹣∞,﹣ )∪( ,+∞)
D.(﹣∞,﹣2)∪(3,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com