19.已知曲線C:y=$\sqrt{4-{x^2}}$(-2≤x≤0)與函數(shù)f(x)=loga(-x)及函數(shù)g(x)=a-x(a>1)的圖象分別交于A(x1,y1),B(x2,y2)兩點(diǎn),則x12+x22的值為4.

分析 通過函數(shù)與反函數(shù),以及圓關(guān)于y=x對稱,推出A,B的坐標(biāo)關(guān)系,然后求出所求表達(dá)式的值.

解答 解:因?yàn)楹瘮?shù)f(x)=loga(-x)和g(x)=a-x(其中a>1)是互為反函數(shù),圖象關(guān)于y=-x對稱,
又圓也關(guān)于y=-x對稱,所以圓C:x2+y2=4與
函數(shù)f(x)=loga(-x)和g(x)=a-x(其中a>1)的圖象,如圖所示
在第二象限的交點(diǎn)分別是A(x1,y1)、
B(x2,y2),
滿足y1=-x2,y2=-x1,
所以x12+x22=4.
故答案為4.

點(diǎn)評 本題主要考查了反函數(shù)的性質(zhì),關(guān)于直線y=-x對稱,關(guān)鍵是求出點(diǎn)在第二象限,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖是一多面體的展開圖,每個面內(nèi)都給了字母,如果面F在前面,從左邊看是面B,那么上面的面是C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+a,x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(f($\frac{1}{2}$))=4,則a=( 。
A.16B.15C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=|x-1|-|x-a|是奇函數(shù)而不是偶函數(shù),且f(x)不恒為0,則(a+1)2016的值( 。
A.0B.1C.22016D.32016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)y=$\frac{m•{3}^{x}-1}{m•{3}^{x}+1}$的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=-x2+4x,x∈[0,5]值域(  )
A.[-5,4]B.[-5,0]C.[0,-5]D.[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一條光線從A(-$\frac{1}{2}$,0)處射到點(diǎn)B(0,1)后被y軸反射,則反射光線所在直線的方程為( 。
A.2x-y-1=0B.2x+y-1=0C.x-2y-1=0D.x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{lo{g}_{4}(x-1),x>1}\end{array}\right.$,則2f(9)+f(log2$\frac{1}{6}$)=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展開式中第6項(xiàng)為常數(shù)項(xiàng).
(1)求展開式中所有項(xiàng)的二項(xiàng)式系數(shù)和;
(2)求展開式中所有項(xiàng)的系數(shù)和;
(3)求展開式中所有的有理項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案