在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是(  )
A、y=2-x
B、y=ln(x+1)
C、y=-
2
x
D、y=2x2+x+1
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)基本初等函數(shù)的單調(diào)性,對選項中的函數(shù)進行判斷即可.
解答: 解:對于A,y=2-x=(
1
2
)
x
,是定義域R上的減函數(shù),∴滿足題意;
對于B,y=ln(x+1),是定義域(-1,+∞)上的增函數(shù),∴不滿足題意;
對于C,y=-
2
x
,在(-∞,0)和(0,+∞)上分別是增函數(shù),∴不滿足題意;
對于D,y=2x2+x+1,在(-∞,-
1
2
)上是減函數(shù),在(-
1
2
,+∞)上是增函數(shù),∴不滿足題意.
故選:A.
點評:本題考查了常見的基本初等函數(shù)的單調(diào)性的判斷問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AD、BE是△ABC的兩條高,求證:∠CED=∠ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)有一個零點x0=-
2
3
,且其圖象過點A(
7
3
,1),記函數(shù)f(x)的最小正周期為T.
(Ⅰ)若f′(x0)<0,試求T的最大值及T取最大值時相應(yīng)的函數(shù)解析式;
(Ⅱ)若將所有滿足題設(shè)條件的ω值按從小到大的順序排列,構(gòu)成數(shù)列{ωn},試求數(shù)列{ωn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(2x-
π
6
)=
3
6
,則cos2x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標系中,曲線
x=-1-2t
y=3+4t
(t為參數(shù))與曲線
x=3cosθ-2
y=3sinθ+1
(θ為參數(shù))相交于A、B兩點.
(1)求點M(-1,2)到直線AB的距離.
(2)求線段AB的中點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若c2≤ab且C=
π
3
,又△ABC外接圓面積為2π,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正四棱柱A1B1C1D1-ABCD的底面邊長1,AB1與底面ABCD成60°角,則點A1到直線AC的距離為( 。
A、
3
3
B、1
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(2,3)且與原點距離為2的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,m為整數(shù)(m>0),若a和b被m除得的余數(shù)相同,則稱a和b對m同余記為a≡b(bmodm),已知a=1+C201+C2022+C20322+…+C2020219,a≡b(bmod10),則b的值可以是( 。
A、2015B、2013
C、2011D、2009

查看答案和解析>>

同步練習(xí)冊答案