已知橢圓+=1(a>b>0)的左、右焦點分別為F1和F2,由四個點M(-a,b)、N(a,b)、F2和F1組成了一個高為,面積為3的等腰梯形.
(1)求橢圓的方程;
(2)過點F1的直線和橢圓交于兩點A,B,求△F2AB面積的最大值.
解 (1)由條件,得b=,且×=3,
所以a+c=3.又a2-c2=3,解得a=2,c=1.
所以橢圓的方程+=1.
(2)顯然,直線的斜率不能為0,設直線方程為x=my-1,直線與橢圓交于A(x1,y1),B(x2,y2).
聯(lián)立方程消去x,
得(3m2+4)y2-6my-9=0,
因為直線過橢圓內的點,無論m為何值,直線和橢圓總相交.
∴y1+y2=,y1y2=-.
S△F2AB=|F1F2||y1-y2|=|y1-y2|
=令t=m2+1≥1,設y=t+,易知t∈時,函數(shù)單調遞減,t∈函數(shù)單調遞增,所以當t=m2+1=1,即m=0時,ymin=.
S△F2AB取最大值3.
科目:高中數(shù)學 來源: 題型:
若雙曲線-=1(a>0,b>0)與直線y=x無交點,則離心率e的取值范圍是( ).
A.(1,2) B.(1,2]
C.(1,) D.(1,]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
橢圓+=1(a>b>0)與直線x+y-1=0相交于P,Q兩點,且OP⊥OQ(O為原點).
(1)求證:+等于定值;
(2)若橢圓的離心率e∈,求橢圓長軸長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com