橢圓+=1(a>b>0)與直線x+y-1=0相交于P,Q兩點(diǎn),且OP⊥OQ(O為原點(diǎn)).
(1)求證:+等于定值;
(2)若橢圓的離心率e∈,求橢圓長軸長的取值范圍.
(1)證明 由消去y,
得(a2+b2)x2-2a2x+a2(1-b2)=0,①
∵直線與橢圓有兩個交點(diǎn),∴Δ>0,
即4a4-4(a2+b2)a2(1-b2)>0⇒a2b2(a2+b2-1)>0,
∵a>b>0,∴a2+b2>1.
設(shè)P(x1,y1),Q(x2,y2),則x1 、x2是方程①的兩實(shí)根.
∴x1+x2=,x1x2=.②
由OP⊥OQ得x1x2+y1y2=0,
又y1=1-x1,y2=1-x2,
得2x1x2-(x1+x2)+1=0.③
式②代入式③化簡得a2+b2=2a2b2.④
∴+=2.
(2)解 利用(1)的結(jié)論,將a表示為e的函數(shù)
由e=⇒b2=a2-a2e2,
代入式④,得2-e2-2a2(1-e2)=0.
∴a2==+.
∵≤e≤,∴≤a2≤.
∵a>0,∴≤a≤.
∴長軸長的取值范圍是[,].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
點(diǎn)M(5,3)到拋物線y=ax2的準(zhǔn)線的距離為6,那么拋物線的方程是( ).
A.y=12x2 B.y=12x2或y=-36x2
C.y=-36x2 D.y=x2或y=-x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若拋物線y2=2px的焦點(diǎn)與橢圓+=1的右焦點(diǎn)重合,則p的值為( ).
A.-2 B.2 C.-4 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).
(1)求拋物線C的方程;
(2)過點(diǎn)F作直線交拋物線C于A,B兩點(diǎn).若直線AO,BO分別交直線l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線x2-=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則的最小值為( ).
A.-2 B.- C.1 D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0)的左、右焦點(diǎn)分別為F1和F2,由四個點(diǎn)M(-a,b)、N(a,b)、F2和F1組成了一個高為,面積為3的等腰梯形.
(1)求橢圓的方程;
(2)過點(diǎn)F1的直線和橢圓交于兩點(diǎn)A,B,求△F2AB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知集合M={x|log2x≤1},N={x|x2-2x≤0},則“a∈M”是“a∈N”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com