4.已知數(shù)列{an}的通頂公式an=$\frac{1}{{n}^{2}+3n+2}$,求前n項(xiàng)Sn

分析 由an=$\frac{1}{{n}^{2}+3n+2}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,運(yùn)用裂項(xiàng)相消求和,即可得到所求.

解答 解:an=$\frac{1}{{n}^{2}+3n+2}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
即有前n頂和Sn=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$.

點(diǎn)評(píng) 本題考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=(ax-5)cosx-asinx(0≤x≤π),其中a為正實(shí)數(shù).
(Ⅰ)當(dāng)a=1時(shí),求f(x)在[0,π]上的零點(diǎn)個(gè)數(shù).
(Ⅱ)對(duì)于定義域內(nèi)的任意x1,x2,將|f(x1)-f(x2)|的最大值記作g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.現(xiàn)有一塊正三棱錐形石料,其三條側(cè)棱兩兩互相垂直,且側(cè)棱長(zhǎng)為1m,若要將這塊石料打磨成一個(gè)石球,則所得石球的最大半徑為$\frac{3-\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.f(x)=$\frac{x}{x-a}$(x≠a),若a>0,且函數(shù)f(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)是定義在(-∞,0)∪(0,+∞)的偶函數(shù),且當(dāng)x>0時(shí),f(x)=x+$\frac{1}{x}$.
(1)求f(x)的解析式;
(2)作出該函數(shù)在定義域內(nèi)的圖象,并結(jié)合圖象說(shuō)出f(x)的單調(diào)性;
(3)求該函數(shù)f(x)在[-4,-1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知二次函數(shù)y=(a-1)x2+2ax+3a-2的圖象最低點(diǎn)在x軸上,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π,問(wèn):當(dāng)x取何值時(shí),函數(shù)有最小值-1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若$\frac{2sinα-cosα}{sinα+2cosα}$=$\frac{3}{4}$,則tanα的值為(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{3}{4}$π,則$\overrightarrow{a}$在$\overrightarrow$上的投影是-$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案