【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點,PA=PD=AD=2
(1)點M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB;
(2)在(1)的條件下,若平面PAD⊥平面ABCD,求二面角M﹣BQ﹣C的大。

【答案】
(1)解:當(dāng)t= 時,PA∥平面MQB

下面證明:若PA∥平面MQB,連AC交BQ于N

由AQ∥BC可得,△ANQ∽△BNC,

PA∥平面MQB,PA平面PAC,

平面PAC∩平面MQB=MN,

∴PA∥MN…

即:PM= PC∴t=


(2)解:由PA=PD=AD=2,Q為AD的中點,則PQ⊥AD..

又平面PAD⊥平面ABCD,所以PQ⊥平面ABCD,連BD,

四邊形ABCD為菱形,

∵AD=AB,∠BAD=60°△ABD為正三角形,

Q為AD中點,∴AD⊥BQ

以Q為坐標(biāo)原點,分別以QA、QB、QP所在的直線為

x,y,z軸,建立如圖所示的坐標(biāo)系,則各點坐標(biāo)為

A(1,0,0),B(0, ,0),Q(0,0,0),P(0,0,

設(shè)平面MQB的法向量為 ,可得

而PA∥MN∴ ,

取z=1,解得

取平面ABCD的法向量 設(shè)所求二面角為θ,

故二面角M﹣BQ﹣C的大小為60°…


【解析】(1)當(dāng)t= 時,PA∥平面MQB,若PA∥平面MQB,連AC交BQ于N,根據(jù)線面平行得到PA∥MN,從而 ,即PM= PC,從而求出t的值;(2)以Q為坐標(biāo)原點,分別以QA、QB、QP所在的直線為x,y,z軸,建立空間直角坐標(biāo)系,先求出平面MQB的法向量 ,取平面ABCD的法向量 設(shè)所求二面角為θ,根據(jù)公式 即可求出二面角M﹣BQ﹣C的大小.
【考點精析】通過靈活運用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動員P過定點 且與圓N: 相切,記動圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(3,0)且斜率不為零的直線交曲線C于A,B兩點,在x軸上是否存在定點Q,使得直線AQ,BQ的斜率之積為非零常數(shù)?若存在,求出定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復(fù)數(shù)z1對應(yīng)的點M(m,n)在曲線 上運動,求復(fù)數(shù)z所對應(yīng)的點P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點按向量 方向平移 個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點A(異于頂點)作其切線,交y軸于點B,求證:以線段AB為直徑的圓恒過一定點,并求出此定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A,B分別為橢圓E: 的左,右頂點,點P(0,﹣2),直線BP交E于點Q, 且△ABP是等腰直角三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)過點P的動直線l與E相交于M,N兩點,當(dāng)坐標(biāo)原點O位于以MN為直徑的圓外時,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的是計算 的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是(
A.i≤100
B.i>100
C.i>50
D.i≤50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x﹣1|,x∈R.
(1)若不等式f(x)≤a的解集為{x|0≤x≤1},求a的值;
(2)若g(x)= 的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD底面是一個棱長為2的菱形,且∠DAB=60°,各側(cè)面和底面所成角均為60°,則此棱錐內(nèi)切球體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是等腰梯形,AD∥BC,BC=2AD,O為BD的中點.
(1)求證:CD∥平面POA;
(2)若PO⊥底面ABCD,CD⊥PB,AD=PO=2,求二面角A﹣PD﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處有極值,求的值;

(2)若對于任意的上單調(diào)遞增,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案