【題目】已知橢圓C1x21a1)與拋物線C2x24y有相同焦點(diǎn)F1

(1)求橢圓C1的標(biāo)準(zhǔn)方程;

(2)已知直線l1過(guò)橢圓C1的另一焦點(diǎn)F2,且與拋物線C2相切于第一象限的點(diǎn)A,設(shè)平行l1的直線l交橢圓C1B,C兩點(diǎn),當(dāng)△OBC面積最大時(shí),求直線l的方程.

【答案】(1) (2)

【解析】

1)求出拋物線的焦點(diǎn),再由橢圓中即可求解.

2)設(shè)出直線方程,與拋物線聯(lián)立,求出直線的方程,再由直線平行設(shè)出直線的方程,與橢圓聯(lián)立,由韋達(dá)定理求弦長(zhǎng),根據(jù)三角形的面積公式配方即可求解.

1)由于拋物線的焦點(diǎn)為,得到c=1,

橢圓的標(biāo)準(zhǔn)方程為

2)設(shè)的方程為y=kx-1,由題可知,k>0.聯(lián)立

所以,k=1

切線方程

設(shè)直線的方程為,聯(lián)立方程組

,消y整理得

設(shè),應(yīng)用韋達(dá)定理

可得

由點(diǎn)O到直線l的距離為

當(dāng),面積最大.

所以

所以直線l的方程為:y=x

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),,求實(shí)數(shù)a的取值范圍;

當(dāng)時(shí),曲線和曲線是否存在公共切線?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校組織的高二女子排球比賽中,有、兩個(gè)球隊(duì)進(jìn)入決賽,決賽采用74勝制.假設(shè)兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為

(Ⅰ)求大于4的概率;

(Ⅱ)求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)關(guān)于圓錐曲線的命題:

①設(shè)A,B是兩個(gè)定點(diǎn),為非零常數(shù),若,則P的軌跡是雙曲線;

②過(guò)定圓C上一定點(diǎn)A作圓的弦AB,O為原點(diǎn),若向量.則動(dòng)點(diǎn)P的軌跡是橢圓;

③方程的兩根可以分別作為橢圓和雙曲線的離心率;

④雙曲線與橢圓有相同的焦點(diǎn).

其中正確命題的序號(hào)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列三種說(shuō)法:

①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.

②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.

③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.

其中所有正確說(shuō)法的序號(hào)為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是國(guó)家統(tǒng)計(jì)局發(fā)布的20183月到20193月全國(guó)居民消費(fèi)價(jià)格的漲跌幅情況折線圖(注:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比),根據(jù)該折線圖,下列結(jié)論正確的是(

A.20183月至20193月全國(guó)居民消費(fèi)價(jià)格同比均上漲

B.20183月至20193月全國(guó)居民消費(fèi)價(jià)格環(huán)比有漲有跌

C.20193月全國(guó)居民消費(fèi)價(jià)格同比漲幅最大

D.20193月全國(guó)居民消費(fèi)價(jià)格環(huán)比變化最快

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】港珠澳大橋是中國(guó)建設(shè)史上里程最長(zhǎng),投資最多,難度最大的跨海橋梁項(xiàng)目,大橋建設(shè)需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測(cè)量這些橋梁構(gòu)件的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,內(nèi)的頻率之比為.

(1)求這些橋梁構(gòu)件質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;

(2)用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任意抽取件橋梁構(gòu)件,求這件橋梁構(gòu)件都在區(qū)間內(nèi)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡(jiǎn)稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級(jí),0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴(yán)重污染.某環(huán)保人士從當(dāng)?shù)啬衬甑腁QI記錄數(shù)據(jù)中,隨機(jī)抽取了15天的AQI數(shù)據(jù),用如圖所示的莖葉圖記錄.根據(jù)該統(tǒng)計(jì)數(shù)據(jù),估計(jì)此地該年空氣質(zhì)量為優(yōu)或良的天數(shù)約為__________.(該年為366天)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn)

1)求橢圓的方程;

2)是否存在經(jīng)過(guò)點(diǎn)的直線,它與橢圓相交于兩個(gè)不同點(diǎn),且滿足為坐標(biāo)原點(diǎn))關(guān)系的點(diǎn)也在橢圓上,如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案