分析 (Ⅰ)將M點(diǎn)坐標(biāo)分別代入拋物線和橢圓方程,即可求得p的值,即可求得拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)由題意可知求得直線OA,OB方程分別為y=kx,y=mx(k≠0,m≠0),代入橢圓方程,求得A和B點(diǎn)坐標(biāo),根據(jù)直線的兩點(diǎn)式方程求得直線AB的方程,由tanθ=tan(α+β),由兩角和的正切公式求得m與k的關(guān)系,代入直線方程,整理得y=$\frac{m(2-m)}{2({m}^{2}+1)}$ (x+2)+1,可知,不管m取何值,直線AB恒過(guò)定點(diǎn)(-2,1).
解答 解:(Ⅰ)拋物線 C:y2=2px( p>0)與橢圓 C':$\frac{x^2}{4}$+$\frac{{15{y^2}}}{16}$=1交于,
M(x1,y1)N(x2,y2)(y1>0,y2<0)兩點(diǎn).
由橢圓的對(duì)稱性可知,y1=p,y2=-p,將點(diǎn)M(x1,p)代入拋物線C:y2=2px(p>0)中,得x1=$\frac{p}{2}$,
將點(diǎn)M($\frac{p}{2}$,p) 代入橢圓C':$\frac{x^2}{4}$+$\frac{{15{y^2}}}{16}$=1中,整理得:16p2=16,解得:p=1.
故拋物線C的標(biāo)準(zhǔn)方程為:y2=2x.
(Ⅱ)設(shè)點(diǎn) A( x 3,y 3),B( x 4,y 4).由題意得 x 3≠x 4(否則 α+β=π,不滿足tan θ=2),且 x 3≠0,x 4≠0,
設(shè)直線OA,OB方程分別為y=kx,y=mx(k≠0,m≠0).
聯(lián)立 $\left\{\begin{array}{l}{y=kx}\\{{y}^{2}=2x}\end{array}\right.$,解得x3=$\frac{2}{{k}^{2}}$,y3=$\frac{2}{k}$;
聯(lián)立$\left\{\begin{array}{l}{y=mx}\\{{y}^{2}=2x}\end{array}\right.$,解得x4=$\frac{2}{{m}^{2}}$,y4=$\frac{2}{m}$;
則由兩點(diǎn)式得,直線AB的方程為 $\frac{y-\frac{2}{m}}{\frac{2}{k}-\frac{2}{m}}$=$\frac{x-\frac{2}{{m}^{2}}}{\frac{2}{{k}^{2}}-\frac{2}{{m}^{2}}}$,
化簡(jiǎn)得y=$\frac{km}{m+k}$x+$\frac{2}{m+k}$.①
∵θ≠$\frac{π}{2}$,由α+β=θ,得tanθ=tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\frac{k+m}{1-km}$,解得:k=$\frac{2-m}{1+2m}$,②
將②代入①,化簡(jiǎn)得y=$\frac{m(2-m)}{2({m}^{2}+1)}$ x+$\frac{1+2m}{{m}^{2}+1}$,得y=$\frac{m(2-m)}{2({m}^{2}+1)}$ (x+2)+1,
即y-1=$\frac{m(2-m)}{2({m}^{2}+1)}$ (x+2)
∴不管m取何值,直線AB恒過(guò)定點(diǎn)(-2,1).
點(diǎn)評(píng) 本題考查橢圓和拋物線的標(biāo)準(zhǔn)方程,直線與圓錐曲線的位置關(guān)系,直線的兩點(diǎn)式方程與一般方程及兩角和差的正切公式的綜合應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,則$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$ | |
B. | △ABC中,A>B是sinA>sinB的充分必要條件 | |
C. | 命題“若a=-1,則f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題為真 | |
D. | 設(shè)命題p:?x>0,x2>2x,則¬p:?x0≤0,x02≤2x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,4,5,2} | B. | {0,4,5} | C. | {2,4,5} | D. | {0,1,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com