精英家教網 > 高中數學 > 題目詳情

直線l1:2x+y-4=0,求l1關于直線l:3x+4y-1=0對稱的直線l2的方程.

 

2x+11y+16=0

【解析】在直線l1上取一點A(2,0),又設點A關于直線l的對稱點為B(x0,y0),

解得B

又l1與l2的交點為M(3,-2),故由兩點式可求得直線l2的方程為2x+11y+16=0.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

設F1、F2分別是橢圓=1(a>b>0)的左、右焦點,若在直線x=上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是________.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題

已知AC、BD為圓O:x2+y2=4的兩條相互垂直的弦,垂足為M(1,),則四邊形ABCD的面積的最大值為________.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題

方程x2+y2-6x=0表示的圓的圓心坐標是________;半徑是__________.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題

定義:曲線C上的點到直線l的距離的最小值稱為曲線C到直線l的距離.已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實數a=________.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題

已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,分別求滿足下列條件的a、b的值.

(1) 直線l1過點(-3,-1),且l1⊥l2;

(2) 直線l1與l2平行,且坐標原點到l1、l2的距離相等.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,已知點A(-1,1),P是動點,且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

(1)求點P的軌跡C的方程;

(2)若Q是軌跡C上異于點P的一個點,且=λ,直線OP與QA交于點M,問:是否存在點P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點P的坐標;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓的中心在原點O,右焦點F在x軸上,橢圓與y軸交于A、B兩點,其右準線l與x軸交于T點,直線BF交橢圓于C點,P為橢圓上弧AC上的一點.

(1)求證:A、C、T三點共線;

(2)如果=3,四邊形APCB的面積最大值為,求此時橢圓的方程和P點坐標.

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數學卷(解析版) 題型:選擇題

已知一個四面體有五條棱長都等于2,則該四面體的體積最大值為( )

A. B.1 C. D.2

 

查看答案和解析>>

同步練習冊答案