【題目】研究機(jī)構(gòu)對(duì)某校學(xué)生往返校時(shí)間的統(tǒng)計(jì)資料表明:該校學(xué)生居住地到學(xué)校的距離(單位:千米)和學(xué)生花費(fèi)在上學(xué)路上的時(shí)間(單位:分鐘)有如下的統(tǒng)計(jì)資料:

到學(xué)校的距離(千米)

1.8

2.6

3.1

4.3

5.5

6.1

花費(fèi)的時(shí)間(分鐘)

17.8

19.6

27.5

31.3

36.0

43.2

如果統(tǒng)計(jì)資料表明有線(xiàn)性相關(guān)關(guān)系,試求:

(1)判斷是否有很強(qiáng)的線(xiàn)性相關(guān)性?

(相關(guān)系數(shù)的絕對(duì)值大于0.75時(shí),認(rèn)為兩個(gè)變量有很強(qiáng)的線(xiàn)性相關(guān)性,精確到0.01)

(2)求線(xiàn)性回歸方程(精確到0.01);

(3)將分鐘的時(shí)間數(shù)據(jù)稱(chēng)為美麗數(shù)據(jù),現(xiàn)從這6個(gè)時(shí)間數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.

參考數(shù)據(jù):,,,

,

參考公式:,

【答案】(1)有很強(qiáng)的線(xiàn)性相關(guān)性;(2);(3)

【解析】

1)通過(guò)計(jì)算線(xiàn)性相關(guān)系數(shù)可得答案;(2)根據(jù)題意寫(xiě)出統(tǒng)計(jì)表,用統(tǒng)計(jì)表中的數(shù)據(jù)求出橫標(biāo)和縱標(biāo)的平均數(shù),利用最小二乘法做出線(xiàn)性回歸方程的系數(shù)、,寫(xiě)出線(xiàn)性回歸方程;(3)根據(jù)(2)中求出的線(xiàn)性回歸方程,求出符合要求的數(shù)據(jù)個(gè)數(shù),再列出全部情況,由古典概型的公式,求出所求概率.

(1)有很強(qiáng)的線(xiàn)性相關(guān)性

(2)依題意得

,,

所以

又因?yàn)?/span>

故線(xiàn)性回歸方程為

(3)由(2)可知,當(dāng)時(shí),,當(dāng)時(shí),,所以滿(mǎn)足分鐘的美麗數(shù)據(jù)共有3個(gè),設(shè)3個(gè)美麗數(shù)據(jù)為,另3個(gè)不是美麗數(shù)據(jù)為、,則從6個(gè)數(shù)據(jù)中任取2個(gè)共有15種情況,即,,,,,,,,,,,,其中,抽取到的數(shù)據(jù)全部為美麗數(shù)據(jù)的有3種情況,即,,.所以從這6個(gè)數(shù)據(jù)中任取2個(gè),抽取的2個(gè)數(shù)據(jù)全部為美麗數(shù)據(jù)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中:

①若命題,則;

②將的圖象沿軸向右平移個(gè)單位,得到的圖象對(duì)應(yīng)函數(shù)為;

③“”是“”的充分必要條件;

④已知為圓內(nèi)異于圓心的一點(diǎn),則直線(xiàn)與該圓相交.

其中正確的個(gè)數(shù)是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在第十五次全國(guó)國(guó)民閱讀調(diào)查中,某地區(qū)調(diào)查組獲得一個(gè)容量為的樣本,其中城鎮(zhèn)居民人,農(nóng)村居民人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民人,農(nóng)村居民人.

(Ⅰ)填寫(xiě)下面列聯(lián)表,并判斷是否有的把握認(rèn)為,經(jīng)常閱讀與居民居住地有關(guān)?

城鎮(zhèn)居民

農(nóng)村居民

合計(jì)

經(jīng)常閱讀

不經(jīng)常閱讀

合計(jì)

(Ⅱ)從該地區(qū)居民城鎮(zhèn)的居民中,隨機(jī)抽取位居民參加一次閱讀交流活動(dòng),記這位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機(jī)變量的分布列和期望.

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面上給定相異兩點(diǎn)A,B,設(shè)P點(diǎn)在同一平面上且滿(mǎn)足,當(dāng)時(shí),P點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱(chēng)這個(gè)圓為阿波羅尼斯圓,現(xiàn)有雙曲線(xiàn),),A,B為雙曲線(xiàn)的左、右頂點(diǎn),C,D為雙曲線(xiàn)的虛軸端點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足,面積的最大值為面積的最小值為4,則雙曲線(xiàn)的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線(xiàn)年產(chǎn)量為件,該生產(chǎn)線(xiàn)分為兩段,流水線(xiàn)第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見(jiàn)下表:

第一段生產(chǎn)的半成品質(zhì)量指標(biāo)

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤(rùn)分別是元、元、元.

(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線(xiàn)第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;

(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線(xiàn)一年能為該公司創(chuàng)造的利潤(rùn);

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線(xiàn)第一段,價(jià)格是萬(wàn)元,使用壽命是年,安裝這種設(shè)備后,流水線(xiàn)第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購(gòu)買(mǎi)該設(shè)備?說(shuō)明理由.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓軸交于兩點(diǎn),設(shè)直線(xiàn)的方程為.

(1)當(dāng)直線(xiàn)與圓相切時(shí),求直線(xiàn)的方程;

(2)已知直線(xiàn)與圓相交于兩點(diǎn).(i),求直線(xiàn)的方程;(ii)直線(xiàn)與直線(xiàn)相交于點(diǎn),直線(xiàn),直線(xiàn),直線(xiàn)的斜率分別為,,是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),點(diǎn),,過(guò)點(diǎn)的平行線(xiàn)交于點(diǎn).設(shè)點(diǎn)的軌跡為.

(Ⅰ)求曲線(xiàn)的方程;

(Ⅱ)已知直線(xiàn)與圓相切于點(diǎn),且與曲線(xiàn)相交于,兩點(diǎn),的中點(diǎn)為,求三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在正四棱錐P-ABCD中,側(cè)棱與底面成角為60°,且側(cè)面積為,則四棱錐P-ABCD的內(nèi)切球的表面積為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為是橢圓上一點(diǎn),軸,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線(xiàn)與橢圓交于、兩點(diǎn),線(xiàn)段的中點(diǎn)為為坐標(biāo)原點(diǎn),且,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案