【題目】研究機(jī)構(gòu)對(duì)某校學(xué)生往返校時(shí)間的統(tǒng)計(jì)資料表明:該校學(xué)生居住地到學(xué)校的距離(單位:千米)和學(xué)生花費(fèi)在上學(xué)路上的時(shí)間(單位:分鐘)有如下的統(tǒng)計(jì)資料:
到學(xué)校的距離(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花費(fèi)的時(shí)間(分鐘) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計(jì)資料表明與有線(xiàn)性相關(guān)關(guān)系,試求:
(1)判斷與是否有很強(qiáng)的線(xiàn)性相關(guān)性?
(相關(guān)系數(shù)的絕對(duì)值大于0.75時(shí),認(rèn)為兩個(gè)變量有很強(qiáng)的線(xiàn)性相關(guān)性,精確到0.01)
(2)求線(xiàn)性回歸方程(精確到0.01);
(3)將分鐘的時(shí)間數(shù)據(jù)稱(chēng)為美麗數(shù)據(jù),現(xiàn)從這6個(gè)時(shí)間數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.
參考數(shù)據(jù):,,,,
,
參考公式:,
【答案】(1)與有很強(qiáng)的線(xiàn)性相關(guān)性;(2);(3)
【解析】
(1)通過(guò)計(jì)算線(xiàn)性相關(guān)系數(shù)可得答案;(2)根據(jù)題意寫(xiě)出統(tǒng)計(jì)表,用統(tǒng)計(jì)表中的數(shù)據(jù)求出橫標(biāo)和縱標(biāo)的平均數(shù),利用最小二乘法做出線(xiàn)性回歸方程的系數(shù)、,寫(xiě)出線(xiàn)性回歸方程;(3)根據(jù)(2)中求出的線(xiàn)性回歸方程,求出符合要求的數(shù)據(jù)個(gè)數(shù),再列出全部情況,由古典概型的公式,求出所求概率.
(1)∴與有很強(qiáng)的線(xiàn)性相關(guān)性
(2)依題意得
,,
所以
又因?yàn)?/span>
故線(xiàn)性回歸方程為
(3)由(2)可知,當(dāng)時(shí),,當(dāng)時(shí),,所以滿(mǎn)足分鐘的美麗數(shù)據(jù)共有3個(gè),設(shè)3個(gè)美麗數(shù)據(jù)為、、,另3個(gè)不是美麗數(shù)據(jù)為、、,則從6個(gè)數(shù)據(jù)中任取2個(gè)共有15種情況,即,,,,,,,,,,,,,,,其中,抽取到的數(shù)據(jù)全部為美麗數(shù)據(jù)的有3種情況,即,,.所以從這6個(gè)數(shù)據(jù)中任取2個(gè),抽取的2個(gè)數(shù)據(jù)全部為美麗數(shù)據(jù)的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中:
①若命題,,則,;
②將的圖象沿軸向右平移個(gè)單位,得到的圖象對(duì)應(yīng)函數(shù)為;
③“”是“”的充分必要條件;
④已知為圓內(nèi)異于圓心的一點(diǎn),則直線(xiàn)與該圓相交.
其中正確的個(gè)數(shù)是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在第十五次全國(guó)國(guó)民閱讀調(diào)查中,某地區(qū)調(diào)查組獲得一個(gè)容量為的樣本,其中城鎮(zhèn)居民人,農(nóng)村居民人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民人,農(nóng)村居民人.
(Ⅰ)填寫(xiě)下面列聯(lián)表,并判斷是否有的把握認(rèn)為,經(jīng)常閱讀與居民居住地有關(guān)?
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計(jì) | |
經(jīng)常閱讀 | |||
不經(jīng)常閱讀 | |||
合計(jì) |
(Ⅱ)從該地區(qū)居民城鎮(zhèn)的居民中,隨機(jī)抽取位居民參加一次閱讀交流活動(dòng),記這位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機(jī)變量的分布列和期望.
附:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面上給定相異兩點(diǎn)A,B,設(shè)P點(diǎn)在同一平面上且滿(mǎn)足,當(dāng)且時(shí),P點(diǎn)的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱(chēng)這個(gè)圓為阿波羅尼斯圓,現(xiàn)有雙曲線(xiàn)(,),A,B為雙曲線(xiàn)的左、右頂點(diǎn),C,D為雙曲線(xiàn)的虛軸端點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足,面積的最大值為,面積的最小值為4,則雙曲線(xiàn)的離心率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線(xiàn)年產(chǎn)量為件,該生產(chǎn)線(xiàn)分為兩段,流水線(xiàn)第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見(jiàn)下表:
第一段生產(chǎn)的半成品質(zhì)量指標(biāo) | 或 | 或 | |
第二段生產(chǎn)的成品為一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生產(chǎn)的成品為二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生產(chǎn)的成品為三等品概率 | 0.5 | 0.3 | 0.1 |
從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:
若生產(chǎn)一件一等品、二等品、三等品的利潤(rùn)分別是元、元、元.
(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線(xiàn)第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;
(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線(xiàn)一年能為該公司創(chuàng)造的利潤(rùn);
(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線(xiàn)第一段,價(jià)格是萬(wàn)元,使用壽命是年,安裝這種設(shè)備后,流水線(xiàn)第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購(gòu)買(mǎi)該設(shè)備?說(shuō)明理由.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓與軸交于兩點(diǎn),設(shè)直線(xiàn)的方程為.
(1)當(dāng)直線(xiàn)與圓相切時(shí),求直線(xiàn)的方程;
(2)已知直線(xiàn)與圓相交于兩點(diǎn).(i),求直線(xiàn)的方程;(ii)直線(xiàn)與直線(xiàn)相交于點(diǎn),直線(xiàn),直線(xiàn),直線(xiàn)的斜率分別為,,,是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),點(diǎn),,過(guò)點(diǎn)作的平行線(xiàn)交于點(diǎn).設(shè)點(diǎn)的軌跡為.
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)已知直線(xiàn)與圓相切于點(diǎn),且與曲線(xiàn)相交于,兩點(diǎn),的中點(diǎn)為,求三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在正四棱錐P-ABCD中,側(cè)棱與底面成角為60°,且側(cè)面積為,則四棱錐P-ABCD的內(nèi)切球的表面積為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,是橢圓上一點(diǎn),軸,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)與橢圓交于、兩點(diǎn),線(xiàn)段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且,求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com