7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$若函數(shù)g(x)=f(x)-x有三個不同的零點,則實數(shù)m的取值范圍是[-1,2).

分析 由題意可得直線y=x和直線y=2有交點,且y=x2+4x+2的圖象和直線y=x有兩個交點,即必須使函數(shù)y=2-x有零點,并且函數(shù)y=x2+3x+2=(x+1)(x+2)有兩個零點,從而得到m的范圍.

解答 解:由題意可得函數(shù)f(x)=$\left\{\begin{array}{l}{2,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$若它的圖象和直線y=x有3個不同的交點,
即直線y=x和直線y=2有交點,且y=x2+4x+2的圖象和直線y=x有兩個交點,
即必須使函數(shù)y=2-x有零點,并且函數(shù)y=x2+3x+2=(x+1)(x+2)有兩個零點,從而得到m<2并且m≥-1,
故答案為:[-1,2).

點評 本題主要考查函數(shù)零點與方程根的關(guān)系,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知不等式ax2+bx+c>0的解是α<x<β,其中β>α>0,求不等式cx2+bx+a<0的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.學(xué)校達標(biāo)運動會后,為了解學(xué)生的體質(zhì)情況,從中抽取了部分學(xué)生的成績,得到一個容量為n的樣本,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出了如圖的頻率分布直方圖,已知[50,60)與[90,100]兩組的頻數(shù)分別為24與6.
(1)求n及頻率分布直方圖中的x,y的值;
(2)估計本次達標(biāo)運動會中,學(xué)生成績的中位數(shù)和平均數(shù);
(3)已知[90,100]組中有2名男生,4名女生,為掌握性別與學(xué)生體質(zhì)的關(guān)系,從本組中選2名作進一步調(diào)查,求2名學(xué)生中至少有1名男生的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某疾病研究所想知道吸煙與患肺病是否有關(guān),于是隨機抽取1000名成年人調(diào)查是否吸煙是否患有肺病,得到2×2列聯(lián)表,經(jīng)計算的K2=5.231.已知在假設(shè)吸煙與患肺病無關(guān)的前提條件下,P(K2≥3.841)=0.05,P(K2≥6.635)=0.01,則該研究所可以(  )
A.有95%以上的把握認為“吸煙與患肺病有關(guān)”
B.有95%以上的把握認為“吸煙與患肺病無關(guān)”
C.有99%以上的把握認為“吸煙與患肺病有關(guān)”
D.有99%以上的把握認為“吸煙與患肺病無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐A-BCDE中,∠ABC=30°,AB⊥AC,AF⊥BC,垂足為F,BE⊥平面ABC,CD∥BE,BC=4,BE=3,CD=1.
(Ⅰ)求證:EF⊥AD;
(Ⅱ)求平面ADE與平面ADF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求下列方程的解集:
(1)sin5x=sin7x;
(2)cos(x-$\frac{π}{4}$)=cos2x;
(3)sin2x=cos3x;
(4)tan3x•tan(x+$\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,一個幾何體的三視圖是三個直角三角形,則該幾何體的最長的棱長等于( 。
A.2$\sqrt{2}$B.3C.3$\sqrt{3}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知空間幾何體的三視圖如圖所示,則該幾何體的表面積是28+8π;幾何體的體積是12+4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=x5+2x3-x+3,且f(2)=7,求f(-2).

查看答案和解析>>

同步練習(xí)冊答案