(2x+
1
x
6展開式中的常數(shù)項(xiàng)等于
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:先求得二項(xiàng)式展開式的通項(xiàng)公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開式的常數(shù)項(xiàng).
解答: 解:(2x+
1
x
6展開式中的通項(xiàng)公式為Tr+1=
C
r
6
•26-rx6-
3r
2
,
令6-
3r
2
=0,求得r=4,
∴展開式中的常數(shù)項(xiàng)等于
C
4
6
•4=60,
故答案為:60.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由直線x-y+1=0,x+y-5=0和x-1=0所圍成的三角形區(qū)域(包括邊界)用不等式組可表示為(  )
A、
x-y+1≤0
x+y-5≤0
x≥1
B、
x-y+1≥0
x+y-5≤0
x≥1
C、
x-y+1≥0
x+y-5≥0
x≤1
D、
x-y+1≤0
x+y-5≤0
x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
sec2x+tanx
sec2x-tanx
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合Pn={1,2,…,n},n∈N*,設(shè)集合A同時(shí)滿足以下三個(gè)條件:①A⊆Pn;②若x∈A,則2x∉A;
③若x∈∁ PnA,則2x∉∁ pnA.當(dāng)n=4時(shí),寫出一個(gè)滿足條件的集合A
 
;當(dāng)N=9時(shí),滿足條件的集合A的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(0,
π
2
),cos(
π
4
-α)=2
2
cos2α,則sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)θ為第二象限角,若sinθ+cosθ=
1
5
,則tan(θ+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且2f(x)+xf′(x)>x2,則不等式(x+2014)2f(x+2014)-4f(-2)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題:
①為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40.
②線性回歸直線方程
y
=
b
x+
a
恒過樣本中心(
.
x
,
.
y
),且至少過一個(gè)樣本點(diǎn);
③復(fù)數(shù)z=(a-2i)i(a∈R,i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為M,則“a<0“是“點(diǎn)M在第四象限”的充要條件.
其中真命題的個(gè)數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集U={1,2,3,4,5,6},M={1,4},N={2,3},則集合{5,6}等于( 。
A、M∪N
B、M∩N
C、(∁UM)∪(∁UN)
D、(∁UM)∩(∁UN)

查看答案和解析>>

同步練習(xí)冊(cè)答案