【題目】已知關(guān)于的不等式.

若關(guān)于的不等式)的解集為,求 的值;

解關(guān)于的不等式.

【答案】(Ⅰ) (Ⅱ)見解析.

【解析】試題分析:1)由題意可得方程的兩根分別為 ,由韋達(dá)定理得于是, 解得 ;(2)不等式為ax2+a-3x-30,即,討論a=0,a0,a=-3a-3,-3a0,由二次不等式的解法,即可得到所求解集.

試題解析:

(Ⅰ)由題,方程的兩根分別為,

于是,

解得, .

(Ⅱ)原不等式等價(jià)于,等價(jià)于,

(1)當(dāng)時(shí),原不等式的解集為;

(2)當(dāng)時(shí), , ,

①當(dāng),即時(shí),

(ⅰ)當(dāng)時(shí),原不等式的解集為;

(ⅱ)當(dāng)時(shí),原不等式的解集為

②當(dāng),即時(shí),原不等式的解集為.

③當(dāng),即時(shí),原不等式的解集為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓 的圓心 ,半徑 .
(1)求圓 的極坐標(biāo)方程;
(2)若 ,直線 的參數(shù)方程為 為參數(shù)),直線 交圓 兩點(diǎn),求弦長 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線 的焦點(diǎn),點(diǎn)為拋物線上一定點(diǎn)。

1直線過點(diǎn)交拋物線、兩點(diǎn),若,求直線的方程;

(2)過點(diǎn)作兩條傾斜角互補(bǔ)的直線分別交拋物線于異于點(diǎn)的兩點(diǎn),試證明直線的斜率為定值,并求出該定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)圓錐的底面半徑為2,高為6,在其中有一個(gè)高為x的內(nèi)接圓柱.

(1)x表示圓柱的軸截面面積S;

(2)當(dāng)x為何值時(shí),S最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)任意m[-1,1],函數(shù)f(x)x2(m4)x42m的值恒大于零x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 “存在”,命題“曲線表示焦點(diǎn)在軸上的橢圓”,命題 曲線表示雙曲線”

1若“”是真命題,求實(shí)數(shù)的取值范圍;

2的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與圓O: 且與橢圓C: 相交于A,B兩點(diǎn)

(1)若直線恰好經(jīng)過橢圓的左頂點(diǎn),求弦長AB;

(2)設(shè)直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(14分)關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集為(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解關(guān)于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓點(diǎn), 是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn)。

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

(Ⅱ)直線與點(diǎn)的軌跡交于不同兩點(diǎn),且(其中 O 為坐標(biāo)

原點(diǎn)),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案