已知公差不為0的等差數(shù)列{an}中,a1=2,{an}部分項(xiàng)按原來的順序由小到大組成等比數(shù)列{akn},且k1=1,k2=3,k3=11.
(1)求該等比數(shù)列的公比q;  
(2)求akn及kn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式分別求出對應(yīng)的公差和公比,即可得到結(jié)論.
解答: 解:(1)∵數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=2,公差d≠0,{an}部分項(xiàng)按原來的順序由小到大組成等比數(shù)列{akn},且k1=1,k2=3,k3=11.
∴a1•a11=
a
2
3
,
即(2+2d)2=2•(2+10d),
解得d=3,
即an=2+3(n-1)=3n-1,
∴q=
a3
a1
=
3×3-1
2
=4.
(2)由(1)得akn=3kn-1=2×4n-1=22n-1
∴kn=
22n-1+1
3
點(diǎn)評:本題主要考查數(shù)列通項(xiàng)公式的計(jì)算,利用等差數(shù)列和等比數(shù)列的定義和通項(xiàng)公式求出公比和公差是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2013x2014-2014x2013+1,x=1是f(x)=0的二重根,設(shè)g(x)=
f(x)
(x-1)2
,則g(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P(x,y)是橢圓
x2
9
+
y2
4
=1
上的點(diǎn),若m=2x-y,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
4
-
y2
8
=1
的右焦點(diǎn)作一直線l交雙曲線于A,B兩點(diǎn),若|AB|=8,則這樣的直線l共有(  )條?
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn)B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,設(shè)∠ABF=α,且α∈[
π
6
,
π
4
]
,則該橢圓離心率e的取值范圍為( 。
A、[
2
2
3
-1]
B、[
2
2
,1)
C、[
2
2
,
3
2
]
D、[
3
3
,
6
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABCDE中,AE⊥平面ABC,BD∥AE,且AC=AB=BC=BD=2,AE=1.
(Ⅰ)求直線CE與平面BCD所成角的正弦值;  
(Ⅱ)求二面角C-DE-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3-
1
2
x2-2x+5,當(dāng)x∈[-1,2]時,f(x)<m恒成立,則實(shí)數(shù)m的取值范圍為(  )
A、m>7
B、m>
157
27
C、
157
27
<m<7
D、m<7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1).
(1)設(shè)a=2,函數(shù)f(x)的定義域?yàn)椋?,63),求函數(shù)f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,集合A={(x,y)丨x2-y2=1},B={(x,y)丨y=t(x+2)+2},若A∩B是單元素集合,則t的個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案