分析 由題意可得$\frac{1}{3a}$+$\frac{1}{2b}$=$\frac{1}{4}$($\frac{1}{3a}$+$\frac{1}{2b}$)(a+b)=$\frac{1}{4}$($\frac{5}{6}$+$\frac{3a}$+$\frac{a}{2b}$),由基本不等式可得.
解答 解:∵a、b∈R+,其a+b=4,
∴$\frac{1}{3a}$+$\frac{1}{2b}$=$\frac{1}{4}$($\frac{1}{3a}$+$\frac{1}{2b}$)(a+b)
=$\frac{1}{4}$($\frac{5}{6}$+$\frac{3a}$+$\frac{a}{2b}$)≥$\frac{1}{4}$($\frac{5}{6}$+2$\sqrt{\frac{3a}•\frac{a}{2b}}$)=$\frac{5+2\sqrt{6}}{24}$,
當(dāng)且僅當(dāng)$\frac{3a}$=$\frac{a}{2b}$即a=4$\sqrt{6}$-8且b=12-4$\sqrt{6}$時(shí)取等號,
∴$\frac{1}{3a}$+$\frac{1}{2b}$的最小值為:$\frac{5+2\sqrt{6}}{24}$.
點(diǎn)評 本題考查基本不等式求最值,“1”的代換是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -15 | B. | 15 | C. | 10 | D. | -10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 無最小值且無最大值 | B. | 無最小值但有最大值 | ||
C. | 有最小值但無最大值 | D. | 有最小值且有最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com