【題目】四棱錐中,平面ABCD,,BC//AD,已知Q是四邊形ABCD內(nèi)部一點(diǎn),且二面角的平面角大小為,若動點(diǎn)Q的軌跡將ABCD分成面積為的兩部分,則=_______

【答案】

【解析】A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖:設(shè)Q的軌跡與y軸的交點(diǎn)坐標(biāo)為Q(0,b,0)(b0).

由題意可知A(0,0,0),D(2,0,0),P(0,0,1),

=(﹣2,0,1),=(﹣2,b,0). =(2,0,0).

設(shè)平面APD的法向量為=(x1,y1,z1),平面PDQ的法向量為=(x2,y2,z2

,

y1=0=(0,1,0),令z2=2=(1,,2).

∵二面角Q﹣PD﹣A的平面角大小為

cos=解得b=

SADQ=

S梯形ABCD﹣SADQ=

S1S2,S1=,S2=S1:S2=(3﹣4):4.

故答案為(3﹣4):4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年6月深圳地鐵總公司對深圳地鐵1號線30個站的工作人員的服務(wù)態(tài)度進(jìn)行了滿意度調(diào)查,其中世界之窗、白石洲、高新園、深大、桃園、大新6個站的得分情況如下:

地鐵站

世界之窗

白石州

高新園

深大

桃園

大新

滿意度得分

70

76

72

70

72

x

已知6個站的平均得分為75分.

(1)求大新站的滿意度得分x,及這6個站滿意度得分的標(biāo)準(zhǔn)差;

(2)從表中前5個站中,隨機(jī)地選2個站,求恰有1個站得分在區(qū)間(68,75)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是:是參數(shù),是常數(shù)).以為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于、兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

Ⅰ)求的反函數(shù)的圖象上點(diǎn)(1,0)處的切線方程;

Ⅱ)證明:曲線與曲線有唯一公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)組織語文、數(shù)學(xué)學(xué)科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)科目成績?yōu)槎泉劦目忌?/span>人.

(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);

(Ⅱ)用隨機(jī)抽樣的方法從獲得數(shù)學(xué)和語文二等獎的學(xué)生中各抽取人,進(jìn)行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進(jìn)行比較分析;

(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌校S機(jī)抽取人進(jìn)行訪談,求兩人兩科成績均為一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水產(chǎn)品經(jīng)銷商銷售某種鮮魚,售價為每公斤元,成本為每公斤元.銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售.如果當(dāng)天賣不出去,未售出的全部降價處理完,平均每公斤損失元.根據(jù)以往的銷售情況,按,,,進(jìn)行分組,得到如圖所示的頻率分布直方圖.

(1)求未來連續(xù)三天內(nèi),該經(jīng)銷商有連續(xù)兩天該種鮮魚的日銷售量不低于公斤,而另一天日銷售量低于公斤的概率;

(2)在頻率分布直方圖的需求量分組中,以各組區(qū)間的中點(diǎn)值代表該組的各個值.

(i)求日需求量的分布列;

(ii)該經(jīng)銷商計劃每日進(jìn)貨公斤或公斤,以每日利潤的數(shù)學(xué)期望值為決策依據(jù),他應(yīng)該選擇每日進(jìn)貨公斤還是公斤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.

(Ⅰ)求曲線C的方程;

(Ⅱ)設(shè)Q為曲線C上的一個不在軸上的動點(diǎn),O為坐標(biāo)原點(diǎn),過點(diǎn)OQ的平行線交曲線CM,N兩個不同的點(diǎn), 求△QMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅?zhǔn)俏覈R梁時代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原理:“冪勢既同,則積不容易.”這里的“冪”指水平截面的面積.“勢”指高,這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。于是可把半徑相等的半球(底面在下)和圓柱(圓柱高等于半徑)放在同一水平面上,圓柱里再放一個半徑和高都與圓柱相等的圓錐(錐尖朝下),考察圓柱里被圓錐截剩的立體,這樣在同一高度用平行平面截得的半球截面和圓柱中剩余立體截得的截面面積相等,因此半球的體積等于圓柱中剩余立體的體積.設(shè)由橢圓所圍成的平面圖形繞軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(如圖,稱為“橢球體”),請類比以上所介紹的應(yīng)用祖暅原理求球體體積的做法求這個橢球體的體積.其體積等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機(jī)抽取了10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測量數(shù)據(jù)的莖葉圖.規(guī)定:當(dāng)產(chǎn)品中的此中元素的含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.

(1)試用樣品數(shù)據(jù)估計甲、乙兩種產(chǎn)品的優(yōu)等品率;

(2)若從甲、乙兩種產(chǎn)品的優(yōu)等品中各隨機(jī)抽取1件,抽到的2件優(yōu)等品中,“甲產(chǎn)品的含量28毫克優(yōu)等品必須在內(nèi),且乙產(chǎn)品的含量28毫克優(yōu)等品不包含在內(nèi)”為事件,求事件的概率.

查看答案和解析>>

同步練習(xí)冊答案