A. | a21a22 | B. | a22a23 | C. | a23a24 | D. | a24a25 |
分析 通過對3an+1=3an-2(n∈N*)變形,結(jié)合a1=15可知an=-$\frac{2}{3}$n+$\frac{47}{3}$,進(jìn)而可得結(jié)論.
解答 解:∵3an+1=3an-2(n∈N*),
∴an+1-an=-$\frac{2}{3}$(n∈N*),
∴數(shù)列{an}是遞減數(shù)列,
又∵a1=15,
∴an=15-$\frac{2}{3}$(n-1)=-$\frac{2}{3}$n+$\frac{47}{3}$,
令an=0即-$\frac{2}{3}$n+$\frac{47}{3}$=0,
解得:n=$\frac{47}{2}$=23.5,
∴a23a24<0,
故選:C.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)及單調(diào)性,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{e}$,e) | B. | (0,$\frac{1}{e}$) | C. | (-∞,$\frac{1}{e}$) | D. | ($\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 51234 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com