12.已知等差數(shù)列中,a4=1,a7+a9=16,則a12的值是( 。
A.15B.30C.31D.64

分析 通過(guò)a4可表示出a7、a9的值,利用a7+a9=16,進(jìn)而計(jì)算即得結(jié)論.

解答 解:記該等差數(shù)列的公差為d,
∵a4=1,
∴a7=1+3d,a9=1+5d,
又∵a7+a9=16,
∴2+8d=16,
解得公差d=$\frac{7}{4}$,
∴a12=a4+8d=15,
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列的簡(jiǎn)單性質(zhì),注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.點(diǎn)O在△ABC內(nèi)部且滿足$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow 0$,則△ABC的面積與凹四邊形ABOC的面積之比是( 。
A.$\frac{6}{5}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.sin75°(1-tan15°)=( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若f(x)=x3,f′(x0)=3,則x0的值為( 。
A.1B.-1C.1或-1D.$\sqrt{3}$或-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知條件p:關(guān)于x的函數(shù)y=(10-a2x在R上單調(diào)遞增;條件q:存在實(shí)數(shù)m∈[-1,2]使得不等式a2-2a-5≤$\sqrt{{m^2}+5}$成立.如果“p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),其中m為實(shí)數(shù)i為虛數(shù)單位,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}滿足a1=a,a2=b,an+2=an+1-an(n∈N*),Sn是{an}的前n項(xiàng)的和,則a2004+S2004=( 。
A.a+bB.a-bC.-a+bD.-a-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.?dāng)?shù)列{an}中,a1=15,3an+1=3an-2(n∈N*),則該數(shù)列中相鄰兩項(xiàng)的乘積是負(fù)數(shù)的是( 。
A.a21a22B.a22a23C.a23a24D.a24a25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.$\frac{5}{3+4i}$的值是$\frac{3}{5}$-$\frac{4}{5}$i.

查看答案和解析>>

同步練習(xí)冊(cè)答案