分析 (1)運(yùn)用橢圓的離心率公式和點(diǎn)滿足方程,解方程可得a,b,即可得到橢圓方程;
(2)設(shè)A(x1,y1),B(x2,y2),代入橢圓方程,由點(diǎn)差法和中點(diǎn)坐標(biāo)公式和直線的斜率公式,即可得到中點(diǎn)弦方程,分別求得與x,y軸的交點(diǎn),可得三角形的面積.
解答 解:(1)由題意可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
$\frac{3}{{a}^{2}}$+$\frac{1}{4^{2}}$=1,a2-b2=c2,
解得a=2,b=1.
即有橢圓方程為$\frac{{x}^{2}}{4}$+y2=1;
(2)設(shè)A(x1,y1),B(x2,y2),
即有$\frac{{{x}_{1}}^{2}}{4}$+y12=1,$\frac{{{x}_{2}}^{2}}{4}$+y22=1,
兩式相減可得$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{4}$+(y1-y2)(y1+y2)=0,
由中點(diǎn)坐標(biāo)公式可得x1+x2=1,y1+y2=1,
即有AB的斜率為kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{4}$,
可得直線AB的方程為y-$\frac{1}{2}$=-$\frac{1}{4}$(x-$\frac{1}{2}$),
令x=0,可得y=$\frac{5}{8}$;令y=0,可得x=$\frac{5}{2}$.
則直線l與坐標(biāo)軸圍成的三角形的面積為S=$\frac{1}{2}$×$\frac{5}{8}$×$\frac{5}{2}$=$\frac{25}{32}$.
點(diǎn)評 本題考查橢圓的方程的求法,注意運(yùn)用離心率公式的運(yùn)用,考查中點(diǎn)弦方程的求法,注意運(yùn)用點(diǎn)差法的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x | B. | f(x)=sinx | C. | f(x)=x2 | D. | f(x)=x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com