11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),O為坐標(biāo)原點(diǎn),過(guò)橢圓的左焦點(diǎn)且斜率為1的直線(xiàn)交橢圓與A、B兩點(diǎn),若$\overrightarrow{OA}$+$\overrightarrow{OB}$與向量$\overrightarrow{a}$=(-2,1)平行.則該橢圓離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

分析 寫(xiě)出直線(xiàn)方程,聯(lián)立直線(xiàn)與橢圓方程,用根與系數(shù)的關(guān)系可得A、B兩點(diǎn)坐標(biāo)的關(guān)系,據(jù)向量共線(xiàn)的條件得橢圓中a,b,c的關(guān)系,從而求得橢圓的離心率.

解答 解:由題意,直線(xiàn)AB的方程為y=x+c,代入橢圓方程,
化簡(jiǎn)得(a2+b2)x2+2a2cx+a2c2-a2b2=0.
令A(yù)(x1,y1),B(x2,y2),
則x1+x2=$\frac{-2{a}^{2}c}{{a}^{2}+^{2}}$,x1x2=$\frac{{a}^{2}{c}^{2}-{a}^{2}^{2}}{{a}^{2}+^{2}}$,
∵$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2)與$\overrightarrow{a}$=(-2,1)平行,
∴2(y1+y2)+(x1+x2)=0,又y1=x1+c,y2=x2+c,
∴2(x1+x2+2c)+(x1+x2)=0,
∴x1+x2=$-\frac{4}{3}c$,
∴$\frac{-2{a}^{2}c}{{a}^{2}+^{2}}$=$-\frac{4}{3}c$,
得a2=2b2=2(a2-c2),
∴a2=2c2,得e=$\frac{\sqrt{2}}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),解決直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系的常用方法是:聯(lián)立直線(xiàn)與圓錐曲線(xiàn)方程,利用根與系數(shù)的關(guān)系求解,該題中同時(shí)注意向量共線(xiàn)的坐標(biāo)運(yùn)算,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,AB=3,AC=2,BC=4,則$\overrightarrow{CA}$•$\overrightarrow{AB}$=(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知點(diǎn)P是正方形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,PA=AB=2,點(diǎn)E、F、H分別是線(xiàn)段PB、AC、PA的中點(diǎn).
(1)求證:EF∥平面APD;
(2)求異面直線(xiàn)HF與CD的夾角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.方程2sin$\frac{2}{3}$x=1的解集是{x|x=3kπ+$\frac{π}{4}$或x=3kπ+$\frac{5π}{4}$,k∈Z }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知sin($\frac{3π}{2}$-x)=$\frac{5}{13}$,則cos2x=(  )
A.-$\frac{119}{169}$B.$\frac{119}{169}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.(1)已知f(x+1)=2x2-4x,則f(1-$\sqrt{2}$)=4+4$\sqrt{2}$;
(2)已知f(x)=$\left\{\begin{array}{l}{10(0<x)}\\{10x(x≥0)}\end{array}\right.$,則f[f(-7)]=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知{an}滿(mǎn)足a1=1,a2 =-13,an+2-2an+1+an=2n-6,則當(dāng)an取最小值時(shí)n的值為( 。
A.8或9B.9C.8D.7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=9,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的公差不為0,數(shù)列{bn}滿(mǎn)足bn=(an-1)2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)拋物線(xiàn)y2=mx(m>0)的焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)在第一象限的交點(diǎn)為A,與拋物線(xiàn)的準(zhǔn)線(xiàn)的交點(diǎn)為B,點(diǎn)A在拋物線(xiàn)的準(zhǔn)線(xiàn)上的射影為點(diǎn)C,若$\overrightarrow{AF}$=$\overrightarrow{FB}$,則$\overrightarrow{AF}$•$\overrightarrow{BC}$的值為( 。
A.-$\frac{3}{2}$m2B.$\frac{3}{2}$m2C.-6m2D.12m2

查看答案和解析>>

同步練習(xí)冊(cè)答案