1.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥0}\\{y≤1}\\{x-y-2≤0}\end{array}\right.$,則z=2x-2y的最大值為8.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,先求m=x-2y的最大值即可.

解答 解:設(shè)m=x-2y得y=$\frac{1}{2}$x$-\frac{m}{2}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{1}{2}$x$-\frac{m}{2}$,
由圖象可知當(dāng)直線y=$\frac{1}{2}$x$-\frac{m}{2}$,過點A時,直線y=$\frac{1}{2}$x$-\frac{m}{2}$,的截距最小,此時z最大,
由$\left\{\begin{array}{l}{x+y=0}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,-1).
代入目標(biāo)函數(shù)m=x-2y得m=1+2=3,
此時z=2x-2y的最大值z=z=23=8,
故答案為:8.

點評 本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知一個幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.24πB.36πC.48πD.54π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.向量($\overrightarrow{AB}$+$\overrightarrow{PB}$)+($\overrightarrow{BO}$+$\overrightarrow{BM}$)+$\overrightarrow{OP}$化簡后等于(  )
A.$\overrightarrow{BC}$B.$\overrightarrow{AB}$C.$\overrightarrow{AC}$D.$\overrightarrow{AM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的三個頂點A(0,4),B(-2,6),C(8,2);
(1)求AB邊的中線所在直線方程.
(2)求AC的中垂線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)復(fù)數(shù)z滿足(1+z)•i=z,則復(fù)數(shù)$\overline{z}$為( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)為奇函數(shù),當(dāng)x<0時,f(x)=x2-1,若f(a)=-2,則a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知O為坐標(biāo)原點,P為雙曲線$\frac{x^2}{a^2}$-y2=1(a>0)上一點,過P作兩條漸近線的平行線交點分別為A,B,若平行四邊形OAPB的面積為$\frac{{\sqrt{3}}}{2}$,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若變量x,y滿足$\left\{\begin{array}{l}x-y+3≥0\\ x+y+1≥0\\ x≤1\end{array}\right.$,且z=2x+y-1的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\frac{lnx}{x}}$+$\sqrt{x}$在點(1,f(1))處的切線斜率為( 。
A.$\frac{3}{2}$B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案