【題目】把一系列向量按次序排成一排,稱之為向量列,記作,向量列滿足:

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)表示向量間的夾角,軸正方向的夾角,若,求.

3)設(shè),問(wèn)數(shù)列中是否存在最小項(xiàng)?若存在,求出最小項(xiàng),若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2;(3)存在最小項(xiàng).

【解析】

1)根據(jù)向量坐標(biāo)的關(guān)系求出模長(zhǎng),即可得解;

2)根據(jù)向量夾角公式求出,,利用裂項(xiàng)求和即可求得;

3)根據(jù)數(shù)列最小項(xiàng)的求法,解不等式組,求解最小項(xiàng).

1

,

是一個(gè)以為首項(xiàng),為公比的等比數(shù)列,

,

所以

2軸正方向的夾角,即

表示向量間的夾角,

,

所以,

所以

3)由(1

,

假設(shè)存在最小項(xiàng),即為,則,即,

解得:,即,

所以

所以存在最小項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,點(diǎn)中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓,分別為其左、右焦點(diǎn),過(guò)的直線與此橢圓相交于兩點(diǎn),且的周長(zhǎng)為8,橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn),過(guò)的動(dòng)直線(不與軸平行)與橢圓相交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn).求證:

i三點(diǎn)共線.

ii

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.

(1)求橢圓的離心率;

(2)設(shè)直線與橢圓交于兩點(diǎn),若直線的斜率之和為2,證明:過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱錐放置在以為直徑的半圓面上,為圓心,為圓弧上的一點(diǎn),為線段上的一點(diǎn),且,,.

(Ⅰ)求證:平面平面

(Ⅱ)當(dāng)二面角的平面角為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 )的焦點(diǎn)為 ,點(diǎn) 在拋物線 ,直線 與拋物線 交于 , 兩點(diǎn) 為坐標(biāo)原點(diǎn).

(1)求拋物線 的方程;

(2)求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), ).

(Ⅰ)若直線和函數(shù)的圖象相切,求的值;

(Ⅱ)當(dāng)時(shí),若存在正實(shí)數(shù),使對(duì)任意,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從某地區(qū)隨機(jī)調(diào)查了100個(gè)用戶,得到用戶對(duì)產(chǎn)品的滿意度評(píng)分頻率分布表如下:

組別

分組

頻數(shù)

頻率

第一組

10

0.1

第二組

20

0.2

第三組

40

0.4

第四組

25

0.25

第五組

5

0.05

合計(jì)

100

1

1)根據(jù)上面的頻率分布表,估計(jì)該地區(qū)用戶對(duì)產(chǎn)品的滿意度評(píng)分超過(guò)70分的概率;

2)請(qǐng)由頻率分布表中數(shù)據(jù)計(jì)算眾數(shù)、中位數(shù),平均數(shù),根據(jù)樣本估計(jì)總體的思想,若平均分低于75分,視為不滿意.判斷該地區(qū)用戶對(duì)產(chǎn)品是否滿意?

查看答案和解析>>

同步練習(xí)冊(cè)答案