20.已知棱長為$\sqrt{3}$的正方體ABCD-A1B1C1D1內(nèi)部有一圓柱,此圓柱恰好以直線AC1為軸,則該圓柱側(cè)面積的最大值為( 。
A.$\frac{{9\sqrt{2}}}{8}π$B.$\frac{{9\sqrt{2}}}{4}π$C.$2\sqrt{3}π$D.$3\sqrt{2}π$

分析 由題知,只需考慮圓柱的底面與正方體的表面相切的情況,即可得出結(jié)論.

解答 解:由題知,只需考慮圓柱的底面與正方體的表面相切的情況,
由圖形的對稱性可知,圓柱的上底面必與過A點的三個面相切,
且切點分別在線段AB1,AC,AD1上,設(shè)線段AB1上的切點為E,AC1∩面A1BD=O2,圓柱上底面的圓心為O1,
半徑即為O1E記為r,則${O_2}F=\frac{1}{3}DF=\frac{1}{3}×\frac{{\sqrt{3}}}{2}×\sqrt{6}=\frac{{\sqrt{2}}}{2}$,$A{O_2}=\frac{1}{3}A{C_1}=1$,
由O1E∥O2F知$\frac{{{O_1}E}}{{\frac{{\sqrt{2}}}{2}}}=\frac{{A{O_1}}}{1}⇒A{O_1}=\sqrt{2}{O_1}E$,則圓柱的高為$3-2A{O_1}=3-2\sqrt{2}r$,${S_側(cè)}=2πr(3-2\sqrt{2}r)=4\sqrt{2}πr(\frac{{3\sqrt{2}}}{4}-r)≤4\sqrt{2}π•{(\frac{{r+\frac{{3\sqrt{2}}}{4}-r}}{2})^2}═\frac{{9\sqrt{2}π}}{8}$.
故選:A.

點評 本題考查圓柱側(cè)面積的最大值,考查旋轉(zhuǎn)體,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知關(guān)于x的不等式ax3+x2+x≤lnx+$\frac{2}{x}$在(0,+∞)上恒成立,則實數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,直線$\frac{{\sqrt{2}}}{2}x+y=1$經(jīng)過E的右頂點和上頂點.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的右焦點為F,過點G(2,0)作斜率不為0的直線交橢圓E于M,N兩點.設(shè)直線FM和FN的斜率為k1,k2.求證:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{1-x}{e^x}$
(1)求函數(shù)f(x)的極值
(2)若x∈[-1,+∞),求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)不等式組$\left\{\begin{array}{l}x+y≥0\\ x≤2\\ y≤0\end{array}\right.$表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機(jī)取一個點,則此點到坐標(biāo)原點的距離大于2的概率是1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在銳角三角形△ABC中,a,b,c分別是角A,B,C的對邊,(a+b+c)(a+c-b)=$({2+\sqrt{3}})ac$,則cosA+sinC的取值范圍為(  )
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中,其定義域和值域與函數(shù)y=elnx的定義域和值域相同的是(  )
A.y=xB.y=lnxC.y=$\frac{1}{\sqrt{x}}$D.y=10x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標(biāo)系xOy平面內(nèi),若函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[{-1,0})\\ cosx,x∈[{0,\frac{π}{2}}]\end{array}$的圖象與x軸圍成一個封閉的區(qū)域A,將區(qū)域A沿z軸的正方向平移4個單位,得到幾何體如圖一,現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域A的面積相等,則此圓柱的體積為π+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.三棱錐A-BCD中,AB,AC,AD兩兩垂直,其外接球半徑為2,設(shè)三棱錐A-BCD的側(cè)面積為S,則S的最大值為8.

查看答案和解析>>

同步練習(xí)冊答案