10.三棱錐A-BCD中,AB,AC,AD兩兩垂直,其外接球半徑為2,設(shè)三棱錐A-BCD的側(cè)面積為S,則S的最大值為8.

分析 三棱錐A-BCD的三條側(cè)棱兩兩互相垂直,所以把它擴(kuò)展為長(zhǎng)方體,它也外接于球,對(duì)角線的長(zhǎng)為球的直徑,然后利用基本不等式解答即可.

解答 解:設(shè)AB,AC,AD分別為a,b,c,則三棱錐A-BCD的三條側(cè)棱兩兩互相垂直,所以把它擴(kuò)展為長(zhǎng)方體,
它也外接于球,對(duì)角線的長(zhǎng)為球的直徑,∴a2+b2+c2=16,
S=$\frac{1}{2}$(ab+bc+ac)≤$\frac{1}{2}$(a2+b2+c2)=8,
故答案為:8.

點(diǎn)評(píng) 本題考查三棱錐A-BCD的側(cè)面積,考查學(xué)生空間想象能力,解答的關(guān)鍵是構(gòu)造球的內(nèi)接長(zhǎng)方體,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知棱長(zhǎng)為$\sqrt{3}$的正方體ABCD-A1B1C1D1內(nèi)部有一圓柱,此圓柱恰好以直線AC1為軸,則該圓柱側(cè)面積的最大值為( 。
A.$\frac{{9\sqrt{2}}}{8}π$B.$\frac{{9\sqrt{2}}}{4}π$C.$2\sqrt{3}π$D.$3\sqrt{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線y=-ln(2x+1)+2在點(diǎn)(0,2)處的切線與直線y=0和y=2x圍成的三角形的面積為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{lnx+1}{x}$,g(x)=x2-(a+1)x
(1)①求函數(shù)f(x)的最大值;
②證明:$\frac{ln2}{2^2}+\frac{ln3}{3^2}+…+\frac{lnn}{n^2}<\frac{{2{n^2}-n-1}}{{4({n+1})}}({n∈{N_+},n≥2})$.
(2)當(dāng)a≥0時(shí),討論函數(shù)h(x)=$\frac{1}{2}{x^2}$+a-axf(x)與函數(shù)g(x)的圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=$\sqrt{3}cosx+sinx({x∈R})$的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在下列函數(shù)中,最小值為2的是(  )
A.y=2x+2-xB.y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$)
C.y=x+$\frac{1}{x}$D.y=log3x+$\frac{1}{lo{g}_{3}x}$(1<x<3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{1-tan17°tan28°}{tan17°+tan28°}$等于( 。
A.-1B.1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是DD1的中點(diǎn),
(I)求證:CF∥平面A1DE;
(Ⅱ)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{{\sqrt{3}}}{3}$x,若頂點(diǎn)到漸近線的距離為$\sqrt{3}$,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{{3{y^2}}}{4}$=1B.$\frac{x^2}{12}-\frac{y^2}{4}$=1C.$\frac{x^2}{4}-\frac{y^2}{12}$=1D.$\frac{{3{x^2}}}{4}-\frac{y^2}{4}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案