10.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C1的極坐標(biāo)方程是ρ2+2ρcosθ=0,圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).
(1)求圓C1和圓C2的交點(diǎn)的極坐標(biāo);
(2)若直線l經(jīng)過(guò)圓C1和圓C2的一個(gè)交點(diǎn),且垂直于公共弦,求直線l的極坐標(biāo)方程.

分析 (1)把參數(shù)方程、極坐標(biāo)方程分別化為直角坐標(biāo)方程,聯(lián)立解出交點(diǎn)坐標(biāo),再化為極坐標(biāo)即可得出.
(2)由(1)可得公共弦所在的直線方程為:y=x.可得直線l的斜率為-1.利用點(diǎn)斜式可得直角坐標(biāo)方程,再化為極坐標(biāo)方程.

解答 解:(1)圓C1的極坐標(biāo)方程是ρ2+2ρcosθ=0,化為直角坐標(biāo)方程:x2+y2+2x=0,
圓C2的參數(shù)方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)),消去參數(shù)可得:x2+(y+1)2=1,即:x2+y2+2y=0,
相減可得:x=y,代入x2+y2+2x=0,可得x2+x=0,解得x=0,-1.
∴圓C1和圓C2的交點(diǎn)為(0,0),(-1,-1).
分別化為極坐標(biāo):(0,0),($\sqrt{2}$,$\frac{5π}{4}$).
(2)由(1)可得公共弦所在的直線方程為:y=x.
∴直線l的斜率為-1.
直線l經(jīng)過(guò)交點(diǎn)(0,0)時(shí),直線l的方程為:y=-x,可得極坐標(biāo):θ=$\frac{3π}{4}$(ρ∈R).
直線l經(jīng)過(guò)交點(diǎn)(-1,-1)時(shí),直線l的方程為:y+1=-(x+1),
即x+y+2=0,可得極坐標(biāo):ρcosθ+ρsinθ+2=0.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點(diǎn)斜式、相互垂直的直線斜率之間的關(guān)系、曲線的交點(diǎn),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2-(6-2m)x-4my+5m2-6m=0,直線l經(jīng)過(guò)點(diǎn)(1,-1),若對(duì)任意的實(shí)數(shù)m,直線l被圓C截得的弦長(zhǎng)都是定值,則直線l的方程為2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=m-|x-2|(m>0),且f(x+2)≥0的解集為[-3,3]
(Ⅰ)求m的值;
(Ⅱ)若a>0,b>0,c>0且$\frac{1}{2a}$+$\frac{1}{3b}$+$\frac{1}{4c}$=$\frac{m}{3}$,求證:2a+3b+4c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知?jiǎng)狱c(diǎn)M(x,y,z)到xOy平面的距離與點(diǎn)M到點(diǎn)(1,-1,2)的距離相等,求點(diǎn)M軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在極坐標(biāo)系中,點(diǎn)(ρ,θ)與點(diǎn)(-ρ,π-θ)的位置關(guān)系是(  )
A.關(guān)于極軸所在直線對(duì)稱B.關(guān)于極點(diǎn)對(duì)稱
C.重合D.關(guān)于直線θ=$\frac{π}{2}$(ρ∈R)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,過(guò)點(diǎn)(1,$\frac{\sqrt{3}}{2}$),($\sqrt{3}$,$\frac{1}{2}$).
(1)求橢圓的方程;
(2)過(guò)橢圓右焦點(diǎn)斜率為k的直線l交橢圓于A,B兩點(diǎn),若$\overrightarrow{OA}$$•\overrightarrow{OB}$=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.方程lg$\frac{2}{x}$=lg(m-8x)的解集為∅,則實(shí)數(shù)m的取值范圍是m<8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知M=$(\begin{array}{l}{2}&{0}\\{0}&{2}\end{array})$,a=$(\begin{array}{l}{3}\\{1}\end{array})$試計(jì)算M10a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在三棱錐S-ABC中,△ABC為正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C為30°,則$\frac{SA}{AB}$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案