已知f(x)=ax-2,g(x)=loga|x|,(a>0且a≠1),若f(4)•g(-4)<0,則y=f(x),y=g(x)在同一坐標(biāo)系內(nèi)的大致圖象是(  )
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:觀察兩個(gè)函數(shù)的解析式,f(x)=ax-2是指數(shù)型的,g(x)=loga|x|是對(duì)數(shù)型的且是一個(gè)偶函數(shù),由f(4)•g(-4)<0,可得出g(-4)<0,由這些特征對(duì)選項(xiàng)進(jìn)行正確判斷即可
解答: 解:由題意f(x)=ax-2是指數(shù)型的,g(x)=loga|x|是對(duì)數(shù)型的且是一個(gè)偶函數(shù),
由f(4)•g(-4)<0,可得出g(-4)<0,由此特征可以確定C、D兩選項(xiàng)不正確,
A,B兩選項(xiàng)中,在(0,+∞)上,函數(shù)是減函數(shù),
故其底數(shù)a∈(0,1)由此知f(x)=ax-2,是一個(gè)減函數(shù),由此知A不對(duì),B選項(xiàng)是正確答案
故選B
點(diǎn)評(píng):本題考查識(shí)圖,判斷圖的能力,考查根據(jù)函數(shù)的圖象確定函數(shù)的性質(zhì)及通過函數(shù)的解析式推測函數(shù)的圖象,綜合性較強(qiáng),解決此類題關(guān)鍵是找準(zhǔn)最明顯的特征作為切入點(diǎn)如本題選擇了從f(4)•g(-4)<0,因?yàn)閒(4)一定為正,這可以由函數(shù)是指數(shù)型的函數(shù)輕易得出.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
4x+1

(1)判斷函數(shù)f(x)的奇偶性,并加以證明.
(2)求解不等式f(x)≤
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用三段論推理:“指數(shù)函數(shù)y=ax是增函數(shù),因?yàn)閥=(
1
2
x是指數(shù)函數(shù),所以y=(
1
2
x是增函數(shù)”,你認(rèn)為這個(gè)推理( 。
A、大前提錯(cuò)誤
B、小前提錯(cuò)誤
C、推理形式錯(cuò)誤
D、是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1,x>0
-2x+1,x≤0
,如果f(a)+f(1)=0,則實(shí)數(shù)a的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求方程x3-x-1=0在區(qū)間(0,2]內(nèi)的實(shí)數(shù)解(精確到0.01).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
4
x

(1)判斷并證明f(x)的奇偶性
(2)證明函數(shù)f(x)在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)y=f(x)滿足不等式:
f(x2)-f(x1)
x2-x1
>0(x1x2)
,若當(dāng)a>0時(shí),f(a2)+f(b2-1)<0,則
(a+1)2+b2
的取值范圍是( 。
A、(0,2)
B、(1,2)
C、(0,
2
D、(1,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2則tan(α+
π
4
)=
 
,sinαcosα=
 
sin2α
cos2α+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知自由落體運(yùn)動(dòng)的方程為s=
1
2
gt2,求:
(1)落體在t0到t0+△t這段時(shí)間內(nèi)的平均速度
.
v
;
(2)落體在t=10s到t=10.1s這段時(shí)間內(nèi)的平均速度.

查看答案和解析>>

同步練習(xí)冊答案