已知自由落體運(yùn)動(dòng)的方程為s=
1
2
gt2,求:
(1)落體在t0到t0+△t這段時(shí)間內(nèi)的平均速度
.
v
;
(2)落體在t=10s到t=10.1s這段時(shí)間內(nèi)的平均速度.
考點(diǎn):變化的快慢與變化率
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)首先結(jié)合條件求的△s,然后利用平均速度為
△s
△t
進(jìn)行計(jì)算即可獲得問題的解答;
(2)先求出t0=10,△t=10.1-10=0.1,代入(1)的即可得到答案
解答: 解:(1)∵△s=
1
2
g(t0+△t)2-
1
2
gt02=gt0△t+
1
2
g+△t2,
∴平均速度
.
v
=
△s
△t
=gt0+
1
2
g△t,
(2)∵t=10s到t=10.1s,
∴t0=10,△t=10.1-10=0.1,
∴平均速度
.
v
=
△s
△t
=gt0+
1
2
g+△t=10g+0.05g=10.05g
點(diǎn)評(píng):導(dǎo)數(shù)的物理意義建立了導(dǎo)數(shù)與物體運(yùn)動(dòng)的瞬時(shí)速度之間的關(guān)系.對(duì)位移s與時(shí)間t的關(guān)系式求導(dǎo)可得瞬時(shí)速度與時(shí)間t的關(guān)系.根據(jù)導(dǎo)數(shù)的定義求導(dǎo)數(shù)是求導(dǎo)數(shù)的基本方法,誚按照“一差、二比、三極限”的求導(dǎo)步驟來求.值得同學(xué)們體會(huì)和反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax-2,g(x)=loga|x|,(a>0且a≠1),若f(4)•g(-4)<0,則y=f(x),y=g(x)在同一坐標(biāo)系內(nèi)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=12x被直線x-y-3=0截得弦長的值為(  )
A、21B、16C、24D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知acosA+bcosB=ccosC,則△ABC是(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:2a2+3b2=10(a>0,b>0),求a
2+b2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:(t2-1)x2+t2y2=t4-t2(t≠0,t≠±1)以下結(jié)論正確的是
 
(寫出所有正確結(jié)論的序號(hào))
①曲線C有可能是圓;
②曲線C有可能是拋物線;
③當(dāng)t<-1或t>1,曲線C是橢圓;
④若曲線C是雙曲線,則0<t<1;
⑤不論t為何值,曲線C有相同的焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:
x
log5x-1
=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m∈R,則“l(fā)og6m=-1”是“直線l1:x+2my-1=0與l2:(3m-1)x-my-1=0平行”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若x=0,則x2+x=0”以及它的逆命題、否命題、逆否命題中,真命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案