11.設(shè)f(x)=(2x-1)ex,則f′(0)等于( 。
A.1B.-1C.4D.-4

分析 令導(dǎo)函數(shù)中的x等于0求出f′(0)的值.

解答 解:∵f(x)=(2x-1)ex,
∴f′(x)=2ex+(2x-1)ex,
∴f′(0)=2e0+(2×0-1)e0=1,
故選:A

點評 本題考查了導(dǎo)數(shù)的運算法則,以及函數(shù)在某點處的導(dǎo)數(shù)值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若定義域均為D的三個函數(shù)f(x),g(x),h(x)滿足條件:?x∈D,點(x,g(x)) 與點(x,h(x))都關(guān)于點(x,f(x))對稱,則稱h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=3x+b,h(x)是g(x)關(guān)于f(x)的“對稱函數(shù)”,且h(x)≥g(x)恒成立,則實數(shù)b的取值范圍是( 。
A.(-∞,-$\sqrt{10}$]B.[-$\sqrt{10}$,$\sqrt{10}$]C.[-3,$\sqrt{10}$]D.[$\sqrt{10}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點F1與點F2是雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{10}$=1的左、右焦點,點P在直線l:x-$\sqrt{3}$y+8+2$\sqrt{3}$=0上,當(dāng)∠F1PF2取最大值時,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的比值是( 。
A.$\sqrt{2}+1$B.$\sqrt{3}+1$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,an+1=3Sn(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=n•an,求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a,b,c為三條不同的直線,α,β是兩個不同的平面,則下列判斷正確的是( 。
A.若a⊥b,b⊥c,則a⊥cB.若a∥α,b∥α,則a∥bC.若a∥α,b⊥α,則b∥αD.若a⊥α,α∥β,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=Asin(x+φ)(A>0)在x=$\frac{π}{3}$處取得最小值,則( 。
A.f(x+$\frac{π}{3}$)是奇函數(shù)B.f(x+$\frac{π}{3}$)是偶函數(shù)C.f(x-$\frac{π}{3}$)是奇函數(shù)D.f(x-$\frac{π}{3}$)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}中.已知a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$.
(1)求證:{$\frac{1}{{a}_{n}}$-1}是等比數(shù)列
(2)若對任意n∈N+,an>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y+2≥0}\\{4x-y-10≤0}\end{array}\right.$,z=kx+y(k∈R)僅在(4,6)處取得最大值,則k的取值范圍是( 。
A.k>1B.k>-1C.k<-$\frac{1}{2}$D.k<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線$\left\{\begin{array}{l}x=5-3t\\ y=3+\sqrt{3}t\end{array}\right.$(為參數(shù))的傾斜角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊答案