分析 (1)化簡可得$\frac{1}{{a}_{n}}$-1=2($\frac{1}{{a}_{n+1}}$-1),從而可判斷{$\frac{1}{{a}_{n}}$-1}是以-$\frac{1}{2}$為首項(xiàng),$\frac{1}{2}$為公比的等比數(shù)列;
(2)由(1)知an=$\frac{{2}^{n}}{{2}^{n}-1}$=1+$\frac{1}{{2}^{n}-1}$,從而可得數(shù)列{an}是遞減數(shù)列,且當(dāng)n→+∞時(shí),an→1;從而求得.
解答 證明:(1)∵a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$,
∴an>0恒成立;an+1an+an+1=2an,
∴1+$\frac{1}{{a}_{n}}$=2$\frac{1}{{a}_{n+1}}$,
∴$\frac{1}{{a}_{n}}$-1=2($\frac{1}{{a}_{n+1}}$-1),
∴$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{2}$($\frac{1}{{a}_{n}}$-1),
又∵$\frac{1}{{a}_{1}}$-1=-$\frac{1}{2}$,
∴{$\frac{1}{{a}_{n}}$-1}是以-$\frac{1}{2}$為首項(xiàng),$\frac{1}{2}$為公比的等比數(shù)列;
解:(2)∵{$\frac{1}{{a}_{n}}$-1}是以-$\frac{1}{2}$為首項(xiàng),$\frac{1}{2}$為公比的等比數(shù)列,
∴$\frac{1}{{a}_{n}}$-1=-$\frac{1}{2}$•($\frac{1}{2}$)n-1=-($\frac{1}{2}$)n,
∴an=$\frac{{2}^{n}}{{2}^{n}-1}$=1+$\frac{1}{{2}^{n}-1}$,
∴數(shù)列{an}是遞減數(shù)列,且當(dāng)n→+∞時(shí),an→1;
∴an>1恒成立,
∴m的最大值為1.
點(diǎn)評 本題考查了整體思想與轉(zhuǎn)化思想的應(yīng)用,同時(shí)考查了構(gòu)造法的應(yīng)用及等比數(shù)列的判斷,同時(shí)考查了恒成立問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
甲 | 89 | 91 | 90 | 88 | 92 |
乙 | 83 | 87 | 9● | 83 | 99 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?n∈N*,anan+1≤an+2 | B. | ?n∈N*,an+an+2=2an+1 | ||
C. | ?n∈N*,Sn<an+1 | D. | ?n∈N*,an+an+3=an+1+an+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com