【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 的值為

【答案】
【解析】解:已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,∴a1+a2 =1+9=10.
數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,∴ =1×9,再由題意可得b2=1×q2>0 (q為等比數(shù)列的公比),
∴b2=3,則 =
所以答案是
【考點精析】掌握等差數(shù)列的性質(zhì)和等比數(shù)列的基本性質(zhì)是解答本題的根本,需要知道在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列;{an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對應(yīng)項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)).

(1)若,求不等式的解集;

(2)若對于任意的,都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的圖象與x軸有且僅有一個交點,求b2+c2+2的取值范圍;
(2)在b≥0的條件下,若f(x)的定義域[﹣1,0],值域也是[﹣1,0],符合上述要求的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點都在河的對岸(不可到達(dá)),為了測量A、B兩點間的距離,選取一條基線CD,A、B、C、D在一平面內(nèi).測得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,則AB=(

A. m
B.200 m
C.100 m
D.數(shù)據(jù)不夠,無法計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差d∈(0,1),且 =1,當(dāng)n=8時,{an}的前n項和Sn取得最小值,則a1的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方法從該校的兩班中各抽取名學(xué)生進(jìn)行視力檢測,檢測的數(shù)據(jù)如下:

名學(xué)生的視力檢測結(jié)果:

名學(xué)生的視力檢測結(jié)果:

(Ⅰ)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪個班的學(xué)生的視力較好?并計算班的名學(xué)生視力的方差;

(Ⅱ)現(xiàn)從班的上述名學(xué)生中隨機(jī)選取名,求這名學(xué)生中至少有名學(xué)生的視力低于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , 為棱的中點.

(1)求證: 平面;

(2)求證: 平面;

(3)若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關(guān)于點( ,0)對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于直線x= 對稱

查看答案和解析>>

同步練習(xí)冊答案