(本小題滿分14分)設(shè)函數(shù),
(1)證明:是上的增函數(shù);
(2)設(shè),當(dāng)時(shí),恒成立,求的取值范圍.
(1)見解析;(2)
【解析】
試題分析:第一步證明函數(shù)是上的增函數(shù),只需證明)成立,若,我們只需,由于,令,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/GZSX/web/STSource/2015072406051493372419/SYS201507240605242622976988_DA/SYS201507240605242622976988_DA.010.png">,所以:在上遞減,上遞增,最小值故:,所以:是上的增函數(shù).
(2)第二步求的取值范圍,可分離常數(shù),,由得:
在上恒成立,只需求出的最小值即可.
試題解析:(1)若證明是上的增函數(shù),只需證明在恒成立,
即:
設(shè),
所以:在上遞減,上遞增,最小值
故:,所以:是上的增函數(shù).
(2)由得:在上恒成立,設(shè),則,所以在遞增,遞減,遞增,所以的最小值為中較小的,,
所以:,即:在的最小值為,
只需
考點(diǎn):1.導(dǎo)數(shù)與函數(shù)的單調(diào)性;2.研究一個(gè)函數(shù)的單調(diào)性與極值,3.極端原理的使用;
考點(diǎn)分析: 考點(diǎn)1:導(dǎo)數(shù)及其應(yīng)用 試題屬性年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江西省吉安市高三上學(xué)期第二次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知集合,,則集合等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河北省唐山市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
展開式中的常數(shù)項(xiàng)為( )
A.-8 B.-12 C.-20 D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省廣州市畢業(yè)班綜合測(cè)試一文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知e為自然對(duì)數(shù)的底數(shù),則曲線e在點(diǎn)處的切線斜率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省廣州市畢業(yè)班綜合測(cè)試一文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)拋物線上一點(diǎn)到軸的距離為,則點(diǎn)到拋物線的焦點(diǎn)的距離是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年吉林省長(zhǎng)春市高三上學(xué)期階段性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分10分)在中,內(nèi)角所對(duì)的邊分別為,若.
(1)求證:成等比數(shù)列;(2)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年吉林省長(zhǎng)春市高三上學(xué)期階段性考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為(為雙曲線的半焦距長(zhǎng)),則該雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年吉林省長(zhǎng)春市高三上學(xué)期階段性考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
下列命題中,正確的是
(1)曲線在點(diǎn)處的切線方程是;
(2)函數(shù)的值域是;
(3)已知,其中,則;
(4)是所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿足:,
,則直線一定通過的內(nèi)心;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省汕頭市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的奇偶性;
(3)設(shè)為第四象限的角,且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com