已知向量
a
=(-cosx,sinx),
b
=(cosx,
3
cosx),函數(shù)f(x)=
a
b

(1)x∈R時(shí),求f(x)的最小正周期;
(2)設(shè)x∈[0,
π
2
]時(shí),求f(x)的值域.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:(1)由函數(shù)f(x)=
a
b
,利用數(shù)量積運(yùn)算、倍角公式、兩角和差的正弦公式即可得出.
(2)利用正弦函數(shù)的單調(diào)性即可得出.
解答: 解:(1)∵f(x)=-cos2x+
3
sinxcosx=sin(2x-
π
6
)-
1
2

∴f(x)的最小正周期為π.
(2)∵x∈[0,
π
2
]
,∴-
π
6
≤2x-
π
6
6
,
-
1
2
≤sin(2x-
π
6
)≤1
,即-1≤f(x)≤
1
2

∴f(x)的值域?yàn)?span id="74bw2st" class="MathJye">[-1,
1
2
].
點(diǎn)評(píng):本題考查了數(shù)量積運(yùn)算、倍角公式、兩角和差的正弦公式、正弦函數(shù)的單調(diào)性,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過圓x2+y2=4外一點(diǎn)P(2,1)引圓的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<
π
2
)
的部分圖象如圖所示,該圖象與y軸交于點(diǎn)F(0,1),與x軸交于點(diǎn)B,C,M為最高點(diǎn),且△MBC的面積為π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)已知f(α)=
8
5
,α∈(
π
2
,π)
,求sin(α+
5
12
π)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程log2(x2-5)+1=log2(4x+6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前項(xiàng)和為n,已知S1=1,
Sn+1
Sn
=
n+c
n
(為常數(shù),c≠1,n∈N*),且a1,a2,a3成等差數(shù)列.
(1)求的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}是首項(xiàng)為1,公比為的等比數(shù)列,記An=a1b1+a2b2+a3b3+…+anbn,Bn=a1b1+a2b2+a3b3+…+(-1)n-1anbn,n∈N*.求證:A2n+3B2n≤-4,(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)2x
1
8
     
(2)5x<3x
(3)log3(x+2)>2        
(4)lg(x-1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sinA+cosA=
2
2
,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)到直線l:y=4的距離是它到點(diǎn)N(0,1)的距離的2倍.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)過點(diǎn)P(3,0)的直線m與軌跡C交于A,B兩點(diǎn).若A是PB的中點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,1),B在x軸上,且|AB|=
2
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案