6.某幾何體的三視圖如圖所示,則該幾何體為( 。
A.四棱錐B.三棱錐C.三棱柱D.圓錐

分析 由已知中三視圖中,主視圖和左視圖為三角形,可得該幾體為錐體,進(jìn)而根據(jù)俯視圖,可得該幾何體為四棱錐.

解答 解:∵該幾何體的主視圖和左視圖為三角形,
∴該幾體為錐體,
又∵該幾何體的俯視圖的外輪廓為四邊形,
可得幾何體為四棱錐.
故選:A.

點(diǎn)評 本題考查的知識點(diǎn)是簡單幾何體的三視圖,其中熟練掌握各組基本幾何體三視圖的形狀,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=xlnx+(1-x)ln(1-x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求證:alna+blnb+clnc≥(a-2)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x+1)lnx-a(x-1)在x=e處的切線在y軸上的截距為2-e.
(1)求a的值;
(2)函數(shù)f(x)能否在x=1處取得極值?若能取得,求此極值,若不能說明理由.
(3)當(dāng)1<x<2時,試比較$\frac{2}{x-1}$與 $\frac{1}{lnx}$-$\frac{1}{ln(2-x)}$大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)$y={0.3^{|{x^2}-6x+5|}}$的單調(diào)增區(qū)間為(-∞,1]和[3,5]..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中正確的是( 。
A.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$B.若|$\overrightarrow{a}$|=1,則$\overrightarrow{a}$=1C.若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$D.若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow{a}$∥$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.設(shè)∠BAD=α
(Ⅰ)用α表示AD和CD的長;
(Ⅱ)寫出梯形周長l關(guān)于角α的函數(shù)解析式,并求這個梯形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是B1B,BC的中點(diǎn),
(1)證明:EF∥A1D;
(2)證明:A1E,AB,DF三線共點(diǎn);
(3)問:線段CD上是否存在一點(diǎn)G,使得直線FG與平面A1EC1所成角的正弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請指出點(diǎn)G的位置,說明理由;若沒有,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC三頂點(diǎn)的坐標(biāo)為A(1,0),B(0,2),O(0,0),P(x,y)是坐標(biāo)平面內(nèi)一點(diǎn),且滿足$\overrightarrow{AP}$•$\overrightarrow{OA}$≤0,$\overrightarrow{BP}•\overrightarrow{OB}$≥0,則$\overrightarrow{OP}•\overrightarrow{AB}$的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC的外接圓的半徑為1,A為銳角,且sinA=$\frac{3}{5}$.
(1)若AC=2,求AB的長;
(2)若tan(A-B)=-$\frac{1}{3}$,求tanC的值.

查看答案和解析>>

同步練習(xí)冊答案