分析 (1)由已知a1=$\frac{3}{2}$,an•bn-bn=1求出數(shù)列首項,得到$_{n}=\frac{1}{{a}_{n}-1}$,結(jié)合an•an-1-2an+1=0利用作差法即可證明數(shù)列{bn}是等差數(shù)列;
(2)由(1)中的等差數(shù)列求出通項公式,代入an•bn-bn=1可得數(shù)列{an}的通項公式.
解答 (1)證明:由于a1=$\frac{3}{2}$,an•an+1-2an+1=0(n≥2),an•bn-bn=1.
∴$_{n}=\frac{1}{{a}_{n}-1}$,
則$_{1}=\frac{1}{{a}_{1}-1}=\frac{1}{\frac{3}{2}-1}=2$,${a}_{n+1}=2-\frac{1}{{a}_{n}}$.
∴$_{n+1}-_{n}=\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}-\frac{1}{{a}_{n}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}-\frac{1}{{a}_{n}-1}$=1.
整理得:bn+1-bn=1.
∴數(shù)列{bn}是以2為首項,以1為公差的等差數(shù)列;
(2)解:∵數(shù)列{bn}是以2為首項,以1為公差的等差數(shù)列,
∴bn=2+(n-1)=n+1,
代入an•bn-bn=1,得(n+1)an=1+(n+1)=n+2,
∴${a}_{n}=\frac{n+2}{n+1}$.
點評 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列通項公式的求法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2]∪[3,+∞) | B. | [2,3] | C. | (-∞,0]∪[3,+∞) | D. | [0,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com