當(dāng)x∈[-2,1]時,不等式ax3-x2+4x+3≥0恒成立,則實數(shù)a的取值范圍是
 
考點:函數(shù)恒成立問題
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:分x=0,0<x≤1,-2≤x<0三種情況進行討論,分離出參數(shù)a后轉(zhuǎn)化為函數(shù)求最值即可,利用導(dǎo)數(shù)即可求得函數(shù)最值,注意最后要對a取交集.
解答: 解:當(dāng)x=0時,不等式ax3-x2+4x+3≥0對任意a∈R恒成立;
當(dāng)0<x≤1時,ax3-x2+4x+3≥0可化為a≥
1
x
-
4
x2
-
3
x3
,
令f(x)=
1
x
-
4
x2
-
3
x3
,則f′(x)=-
1
x2
+
8
x3
+
9
x4
=-
(x-9)(x+1)
x4
(*),
當(dāng)0<x≤1時,f′(x)>0,f(x)在(0,1]上單調(diào)遞增,
f(x)max=f(1)=-6,∴a≥-6;
當(dāng)-2≤x<0時,ax3-x2+4x+3≥0可化為a≤
1
x
-
4
x2
-
3
x3
,
由(*)式可知,當(dāng)-2≤x<-1時,f′(x)<0,f(x)單調(diào)遞減,當(dāng)-1<x<0時,f′(x)>0,f(x)單調(diào)遞增,
f(x)min=f(-1)=-2,∴a≤-2;
綜上所述,實數(shù)a的取值范圍是-6≤a≤-2,即實數(shù)a的取值范圍是[-6,-2].
故答案為:[-6,-2].
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查轉(zhuǎn)化思想、分類與整合思想,按照自變量討論,最后要對參數(shù)范圍取交集.若按照參數(shù)討論則取并集,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱的三視圖如圖所示,則該棱柱的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l:y=(a+1)x-1與曲線C:y2=ax恰好有一個公共點,試求實數(shù)a的取值集合,并指出a=0,a=-1時a的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x-1)2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x∈(0,+∞),f(x)≥ax2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b(x2+1)log2x
1+x2
有最大值2,其中a,b為常數(shù),則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足
1≤x+y≤2
1≤x-y≤2
,則z=2x+y的最大值為( 。
A、2
B、4
C、
7
2
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖1和圖2中的四邊形ABCD和AEFG都是正方形.
(1)如圖1,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知周期為4的函數(shù)f(x)=
m
1-x2
,(-1≤x≤1)
1-|x-2|,(1<x≤3)
,其中m>0,若關(guān)于x的方,3f(x)=x恰有5個不同實數(shù)解,則m的取值范圍是(  )
A、(
15
3
,
7
B、(
4
3
7
C、(
4
3
5
3
D、(
15
3
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M為橢圓
x2
9
+
y2
4
=1上的動點,則點M到直線x+2y-10=0的距離的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案