【題目】函數(shù) 的圖象,經(jīng)過下列哪個平移變換,可以得到函數(shù)y=5sin2x的圖象?( )
A.向右平移
B.向左平移
C.向右平移
D.向左平移

【答案】C
【解析】解:由函數(shù) =5sin[2(x+ )],

要得到函數(shù)y=5sin2x的圖象,

只需將y=5sin[2(x+ )]向右平移 可得y=5sin2x.

所以答案是:C

【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若橢圓 與雙曲線 有相同的焦點F1、F2 , P是兩曲線的一個交點,則△F1PF2的面積是(
A.4
B.2
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)奇函數(shù)f(x)在區(qū)間[﹣7,﹣3]上是減函數(shù)且最大值為﹣5,函數(shù)g(x)= ,其中a<
(1)判斷并用定義法證明函數(shù)g(x)在(﹣2,+∞)上的單調(diào)性;
(2)求函數(shù)F(x)=f(x)+g(x)在區(qū)間[3,7]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的離心率為 ,以E的四個頂點為頂點的四邊形的面積為4 . (Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A,B分別為橢圓E的左、右頂點,P是直線x=4上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,試探究,點B是否在以MN為直徑的圓內(nèi)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π. (Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移 個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象.若y=g(x)在[0,b](b>0)上至少含有10個零點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)相交于A、B兩點.
(1)求證:OA⊥OB;
(2)當△OAB的面積等于 時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點.求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=3f(x+2),當x∈[0,2)時,f(x)=﹣x2+2x.設(shè)f(x)在[2n﹣2,2n)上的最大值為an(n∈N* , 且{an}的前n項和為Sn , 則Sn的取值范圍是( )
A.[1,
B.[1, ]
C.[ ,2)
D.[ ,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程 關(guān)于時間 的函數(shù)關(guān)系式分別為 , , ,有以下結(jié)論:
①當 時,甲走在最前面;
②當 時,乙走在最前面;
③當 時,丁走在最前面,當 時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分).

查看答案和解析>>

同步練習(xí)冊答案