已知直線l1:x+3y-5=0,l2:3kx-y+1=0.若l1,l2與兩坐標軸圍成的四邊形有一個外接圓,則k=________.

±1
分析:由l1,l2與兩坐標軸圍成的四邊形有一個外接圓,可得此四邊形存在一組對角的和等于180°.當直線l2的斜率
大于零時,根據(jù)l1⊥l2 ,由此求得k的值.當直線l2的斜率小于零時,應有∠ABC與∠ADC互補,即tan∠ABC=
-tan∠ADC,由此又求得一個k值,綜合可得結論.
解答:由題意知,l1,l2與兩坐標軸圍成的四邊形有一組對角互補.
由于直線l1:x+3y-5=0是一條斜率等于-的固定直線,直線l2:3kx-y+1=0經(jīng)過定點A(0,1),
當直線l2的斜率大于零時,應有l(wèi)1⊥l2 ,∴3 k×(-)=-1,解得 k=1.
當直線l2的斜率小于零時,如圖所示:設直線l1與y軸的交點為B,與x軸的交點為C,l2 與x軸的交點為D,
要使四邊形ABCD是圓內(nèi)接四邊形,應有∠ABC與∠ADC互補,即tan∠ABC=-tan∠ADC.
再由tan(90°+∠ABC)=KBC=-,可得tan∠ABC=3,∴tan∠ADC=-3=KAD=3k,解得 k=-1.
綜上可得,k=1或 k=-1,
故答案為:±1.

點評:本題考查兩條直線垂直的條件,直線的傾斜角、斜率間的關系,存在一組對角的和等于180°的四邊形一定有外接圓,
屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l1:x+2y+1=0,l2:-2x+y+2=0,它們相交于點A.
(1)判斷直線l1和l2是否垂直?請給出理由;
(2)求A點的坐標及過點A且與直線l3:3x+y+4=0平行的直線方程(請給出一般式)
(3)求直線l1上點P(1,y1),Q(x2,1)與B(2,1)構成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x-2y-1=0,直線l2:ax-by+1=0
(1)集合A={1,2,3,4,5,6},若a∈A、b∈A且隨機取數(shù),求l1與l2平行的概率;
(2)若a∈[0,6]、b∈[0,4]且隨機取數(shù),求l1與l2的交點位于第一象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求m的值,使得:(1)l1⊥l2;(2)l1∥l2;(3)l1∩l2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0.當m為何值時l1與l2
(1)相交,
(2)平行,
(3)重合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x-y+
3
=0,l2:2x-ay+1=0,且l1l2
,則a=
-2
-2

查看答案和解析>>

同步練習冊答案