19.已知復(fù)數(shù)z=$\frac{2+i}{1-2i}$,則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1B.-1C.iD.-i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)z=$\frac{2+i}{1-2i}$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}$=$\frac{5i}{5}$=i,
則z的共軛復(fù)數(shù)$\overline z$=-i.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x-4lnx,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為(  )
A.2x-y-3=0B.2x+y-3=0C.3x+y-4=0D.3x-y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(α)=$\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$.
(1)求f(-$\frac{41π}{6}$)的值;
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在直角坐標(biāo)系xOy中,全集U={(x,y)|x,y∈R},集合A={(x,y)|xcosθ+(y-4)sinθ=1,0≤θ≤2π},已知集合A的補(bǔ)集∁UA所對(duì)應(yīng)區(qū)域的對(duì)稱中心為M,點(diǎn)P是線段x+y=8(x>0,y>0)上的動(dòng)點(diǎn),點(diǎn)Q是x軸上的動(dòng)點(diǎn),則△MPQ周長的最小值為( 。
A.24B.4$\sqrt{10}$C.14D.8+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題的說法錯(cuò)誤的是( 。
A.對(duì)于命題p:?x∈R,x2+x+1>0,則?p:?x0∈R,x02+x0+1≤0
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.若命題p∧q為假命題,則p,q都是假命題
D.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\overrightarrow a$=($\sqrt{2}$,-2),$\overrightarrow b$=(sin($\frac{π}{4}$+2x),cos2x)(x∈R).設(shè)函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$.
(1)求$f(-\frac{π}{4})$的值;
(2)求f(x)的最大值及對(duì)應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.運(yùn)行如圖所示的程序,輸出的結(jié)果是(  )
A.5B.6C.15D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1,過右焦點(diǎn)F作不垂直于x軸的弦交橢圓于A,B兩點(diǎn),AB的垂直平分線交x軸于N,則|NF|:|AB|等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.查某市出租車使用年限和該年支出維修費(fèi)用(萬元),得到數(shù)據(jù)如表:
使用年限23456
維修費(fèi)用2.23.85.56.57.0
(1)求線性回歸方程(結(jié)果保留兩位小數(shù));
(2)假設(shè)每輛出租車每年的毛獲利額為14萬元,并且每名出租車司機(jī)的年收益額不低于4萬元.根據(jù)線性回歸分析,計(jì)算該出租車報(bào)廢年限.(結(jié)果保留整數(shù))
參考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案