14.下列命題的說法錯誤的是( 。
A.對于命題p:?x∈R,x2+x+1>0,則?p:?x0∈R,x02+x0+1≤0
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.若命題p∧q為假命題,則p,q都是假命題
D.命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”

分析 利用命題的否定判斷A的正誤;充要條件判斷B的正誤;復(fù)合命題的真假判斷C的正誤;四種命題的逆否關(guān)系判斷D的正誤;

解答 解:對于A,命題p:?x∈R,x2+x+1>0,則?p:?x0∈R,x02+x0+1≤0,滿足命題的否定關(guān)系,正確;
對于B,“x=1”是“x2-3x+2=0”的充分不必要條件,滿足“x=1”⇒“x2-3x+2=0”,反之,不成立,所以B正確;
對于C,若命題p∧q為假命題,則p,q至少一個是假命題,所以C不正確;
對于D,命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”,滿足逆否命題的形式,正確.
故選:C.

點評 本題考查命題的否定,充要條件以及復(fù)合命題的真假,四種命題的逆否關(guān)系,基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R)
(1)當0≤a<$\frac{1}{2}$時,討論f(x)的單調(diào)性;
(2)設(shè)g(x)=x2-2bx+4,當a=$\frac{1}{4}$時,
(i)若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)b取值范圍;
(ii)對于任意x1,x2∈(1,2]都有|f(x1)-f(x2)|≤λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.復(fù)數(shù)z滿足(1-2i)z=(1+i)2,則z對應(yīng)復(fù)平面上的點的坐標為(-$\frac{4}{5}$,$\frac{2}{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.“p:x∈{x|x2-x-2≥0}”,“q:x∈{x|2a-1≤x≤a+3}”,若?p是q的充分不必要條件,則a的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.不等式(x-2y+1)(x+y-3)<0表示的區(qū)域為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知復(fù)數(shù)z=$\frac{2+i}{1-2i}$,則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.直線y=k(x-1)與圓x2+y2-2y-2=0的位置關(guān)系是相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在四面體P-ABC中,PC⊥平面ABC,AB=AC=2,BC=PC=2$\sqrt{2}$,則該四面體外接球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3i-1}{1+3i}$對應(yīng)的點的坐標為( 。
A.($\frac{4}{5}$,$\frac{3}{5}$)B.(-1,$\frac{3}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)D.($\frac{3}{5}$,1)

查看答案和解析>>

同步練習冊答案