7.在直角坐標(biāo)系xOy中,全集U={(x,y)|x,y∈R},集合A={(x,y)|xcosθ+(y-4)sinθ=1,0≤θ≤2π},已知集合A的補集∁UA所對應(yīng)區(qū)域的對稱中心為M,點P是線段x+y=8(x>0,y>0)上的動點,點Q是x軸上的動點,則△MPQ周長的最小值為( 。
A.24B.4$\sqrt{10}$C.14D.8+4$\sqrt{2}$

分析 利用點到直線的距離公式計算可知集合A表示的圖形即為以(0,4)為圓心、1為半徑的單位圓的外部,從而可得M(0,4),通過作出圖象,問題轉(zhuǎn)化為求點M關(guān)于x軸和x+y=8對稱的兩點之間的距離,計算即得結(jié)論.

解答 解:∵點(0,4)到直線xcosθ+(y-4)sinθ=1的距離d=$\frac{|0+0-1||}{\sqrt{si{n}^{2}θ+co{s}^{2}θ}}$=1,
∴直線xcosθ+(y-4)sinθ=1為圓x2+(y-4)2=1的切線,
∴集合A的補集∁UA所對應(yīng)的區(qū)域為圓x2+(y-4)2=1的內(nèi)部,故M(0,4),
過直線x+y=8及x軸作點M的對稱點A,B,則A(0,-4),B(4,8),
故所求值為線段AB的長度,由兩點間距離公式可知
|AB|=$\sqrt{(0-4)^{2}+(-4-8)^{2}}$=4$\sqrt{10}$,
故選:B.

點評 本題考查函數(shù)的最值及幾何意義,考查數(shù)形結(jié)合能力,考查轉(zhuǎn)化思想,利用點到直線的距離公式是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平行六面體ABCD-A1B1C1D1中,以頂點A為端點的三條棱長都等于1,且兩兩夾角都為45°,則|$\overrightarrow{A{C}_{1}}$|=$\sqrt{3+3\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)全集U={1,2,3,4,5,6},用U的子集可表示由0,1組成的6位字符串,如:{2,4}表示的是第2個字符是1,第4個字符為1,其它均為0的6位字符串010100,并規(guī)定空集表示為000000.若A={1,3},集合A∪B表示的字符串為101001,則滿足條件的集合B的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知兩個不相等的非零向量$\overrightarrow{a}$,$\overrightarrow$,兩組向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$,$\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$,$\overrightarrow{{y}_{5}}$均由2個$\overrightarrow{a}$和3個$\overrightarrow$排列而成,記S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$+$\overrightarrow{{x}_{5}}$•$\overrightarrow{{y}_{5}}$,Smin表示S所有可能取值中的最小值.則下列命題正確的是 ( 。
①S有5個不同的值;
②若$\overrightarrow{a}$⊥$\overrightarrow$,則Smin與|$\overrightarrow{a}$|無關(guān);
③若$\overrightarrow{a}$∥$\overrightarrow$,則Smin與|$\overrightarrow$|無關(guān);
④若|$\overrightarrow$|>4|$\overrightarrow{a}$|,則Smin>0;
⑤若|$\overrightarrow$|=4|$\overrightarrow{a}$|,Smin=8|$\overrightarrow{a}$|2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$.
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.“p:x∈{x|x2-x-2≥0}”,“q:x∈{x|2a-1≤x≤a+3}”,若?p是q的充分不必要條件,則a的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x},x≤0\\ lnx,x>0\end{array}$.
(1)計算f(0)、f(1);
(2)畫出輸入自變量x,輸出函數(shù)值f(x)的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=$\frac{2+i}{1-2i}$,則z的共軛復(fù)數(shù)$\overline z$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=x-aex-1(常數(shù)a∈R)
(Ⅰ)若f(x)≤0對任意x∈R恒成立,求a的取值范圍;
(Ⅱ)對任意的n個正實數(shù)a1,a2,…,an,記A=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$,求證:A≥$\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,a,b,c是角A,B,C的對邊,已知bcosC+$\sqrt{3}$bsinC-a-c=0,則角B=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊答案