3.已知函數(shù)$f(x)=\left\{\begin{array}{l}sinπx+1,x≤0\\{log_2}(3{x^2}-12x+15),x>0\end{array}\right.$,則函數(shù)y=f(x)-1在[-3,3]上所有的零點(diǎn)之和為-6.

分析 利用分段函數(shù),分別求零點(diǎn),即可得出結(jié)論.

解答 解:當(dāng)-3≤x≤0時(shí),y=f(x)-1=sinπx有4個(gè)零點(diǎn),分別為-3,-2,-1,0;
當(dāng)0<x≤3時(shí),y=f(x)-1=$lo{g}_{2}(3{x}^{2}-12x+15)$-1=0,∴3x2-12x+13=0,方程無解,
∴函數(shù)y=f(x)-1在[-3,3]上所有的零點(diǎn)之和為-3-2-1+0=-6.
故答案為:-6.

點(diǎn)評(píng) 本題考查分段函數(shù),考查函數(shù)的零點(diǎn),正確運(yùn)用分段函數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.用max{a,b}表示a,b兩數(shù)中的最大值,函數(shù)f(x)=max{ax,$\frac{x}{4}$}(a>0,a≠1),若f(x)>$\frac{1}{2}$恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,1)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(x2-1)(x-2)7的展開式中x3項(xiàng)的系數(shù)是-112.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.2名廚師和3位服務(wù)員共5人站成一排合影,若廚師甲不站兩端,3位服務(wù)員中有且只有兩位服務(wù)員相鄰,則不同排法的種數(shù)是( 。
A.60B.48C.42D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\sqrt{2}t}\\{y=-1+\sqrt{2}t}\end{array}}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρ=2cos(θ+\frac{π}{4})$
(1)判斷曲線C1與曲線C2的位置關(guān)系;
(2)設(shè)點(diǎn)M(x,y)為曲線C2上任意一點(diǎn),求2x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以下四個(gè)命題中,真命題的個(gè)數(shù)是 ( 。
①若a+b≥2,則a,b中至少有一個(gè)不小于1;
②$\overrightarrow{a}$•$\overrightarrow$=0是$\overrightarrow{a}$⊥$\overrightarrow$的充要條件;
③?x∈[0,+∞),x3+x≥0;
④函數(shù)y=f(x+1)是奇函數(shù),則y=f(x)的圖象關(guān)于(1,0)對(duì)稱.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若$\frac{a}=\frac{{b+3\sqrt{3}c}}{a}$,$sinC=2\sqrt{3}sinB$,則tanA=( 。
A.$\sqrt{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),垂直于x軸的焦點(diǎn)弦的弦長(zhǎng)為$\frac{{6\sqrt{5}}}{5}$,直線$x-2y+\sqrt{2}=0$與以原點(diǎn)為圓心,以橢圓的離心率e為半徑的圓相切.
(1)求該橢圓C的方程;
(2)過右焦點(diǎn)F的直線交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為M,AB的中垂線與x軸和y軸分別交于D,E兩點(diǎn).記△MFD的面積為S1,△OED的面積為S2.求$\frac{{{S_1}{S_2}}}{S_1^2+S_2^2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行抽樣調(diào)查,調(diào)查結(jié)果如表所示
喜歡甜品不喜歡甜品總計(jì)
南方學(xué)生503080
北方學(xué)生101020
總計(jì)6040100
(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”
(2)已知在被調(diào)查的北方學(xué)生中有4人是數(shù)學(xué)系的學(xué)生,其中2人喜歡甜品,現(xiàn)在從這4名學(xué)生中隨機(jī)抽取2人,求恰有1人喜歡甜品的概率?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
下面的臨界表供參考:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

同步練習(xí)冊(cè)答案