A. | $\left\{\begin{array}{l}x'=2x\\ y'=\sqrt{3}y\end{array}\right.$ | B. | $\left\{\begin{array}{l}x'=\frac{1}{2}x\\ y'=\frac{{\sqrt{3}}}{3}y\end{array}\right.$ | C. | $\left\{\begin{array}{l}x'=4x\\ y'=3y\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x′=\frac{1}{4}x}\\{y′=\frac{1}{3}y}\end{array}\right.$ |
分析 設(shè)伸縮變換φ為$\left\{\begin{array}{l}x'=hx\\ y'=ky\end{array}\right.,(h,k>0)$,代入$\frac{x^2}{4}+\frac{y^2}{3}=1$,化簡(jiǎn)計(jì)算即可得到.
解答 解:設(shè)伸縮變換φ為$\left\{\begin{array}{l}x'=hx\\ y'=ky\end{array}\right.,(h,k>0)$,
則$\left\{\begin{array}{l}x=\frac{x'}{h}\\ y=\frac{y'}{k}\end{array}\right.$,
代入$\frac{x^2}{4}+\frac{y^2}{3}=1$
得$\frac{x^2}{{4{h^2}}}+\frac{y^2}{{3{k^2}}}=1$,
∴$\left\{\begin{array}{l}4{h^2}=1\\ 3{k^2}=1\end{array}\right.⇒\left\{\begin{array}{l}h=\frac{1}{2}\\ k=\frac{{\sqrt{3}}}{3}\end{array}\right.$
故選:B
點(diǎn)評(píng) 本題考查了伸縮變換,關(guān)鍵是對(duì)變換公式的理解與運(yùn)用,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\frac{e}{2}}$) | B. | (1,$\frac{e}{2}}$] | C. | (-∞,0)∪(1,$\frac{e}{2}}$] | D. | (-∞,0)∪(1,$\frac{e}{2}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |r|趨近于0時(shí),沒(méi)有非線性相關(guān)關(guān)系 | B. | |r|越接近于1時(shí),線性相關(guān)程度越強(qiáng) | ||
C. | |r|越大,相關(guān)程度越大 | D. | |r|越小,相關(guān)程度越大 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-$\sqrt{2}$) | B. | (-$\sqrt{2}$,0) | C. | (-∞,0)∪($\sqrt{2}$,+∞) | D. | (-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{192-8π}{3}$ | B. | $16+16\sqrt{5}+4(\sqrt{2}-1)π$ | C. | $\frac{56π}{3}$ | D. | $\frac{64-8π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com